
Predicting Stances in Twitter Conversations for
Detecting Veracity of Rumors: a Neural Approach

Lahari Poddar, Wynne Hsu, Mong Li Lee
School of Computing

National University of Singapore
{lahari, whsu, leeml}@comp.nus.edu.sg

Shruti Subramaniyam*
Department of Computer Science

Columbia University
s.shruti@columbia.edu

Abstract—Detecting rumors is a crucial task requiring signifi-
cant time and manual effort in forms of investigative journalism.
In social media such as Twitter, unverified information can get
disseminated rapidly making early detection of potentially false
rumors critical. We observe that the early reactions of people
towards an emerging claim can be predictive of its veracity. We
propose a novel neural network architecture using the stances
of people engaging in a conversation on Twitter about a rumor
for detecting its veracity. Our proposed solution comprises two
key steps. We first detect the stance of each individual tweet, by
considering the textual content of the tweet, its timestamp, as
well as the sequential conversation structure leading up to the
target tweet. Then we use the predicted stances of all tweets in a
conversation tree to determine the veracity of the original rumor.
We evaluate our model on the SemEval2017 rumor detection
dataset and demonstrate that our solution outperforms the state-
of-the-art approaches for both stance prediction and rumor
veracity prediction tasks.

I. INTRODUCTION

Rumor is a circulating piece of story with questionable
veracity or truthfulness. Given the increasing penetration of
social media in our daily lives, uncensored news updates
by media and individuals have become our main sources
of information. It has been reported that more than 63% of
social media users use Facebook and Twitter for their primary
source of news [1]. Existing rumor debunking websites like
factcheck.org or snopes.com use manual investigative
journalism which entails a long delay during which a false
story could get widely circulated and become disruptive.

Automatically analyzing and determining the veracity of
online content has been of recent interest among the web
and natural language processing communities. After the ini-
tial work [2] of identifying controversial posts from Twitter,
increasingly advanced systems have been developed using a
wide range of hand crafted features [3], [4], [5], [6]. These
approaches leverage user features derived from their demog-
raphy, followers, posting and re-tweeting behavior, textual
features from the text of the posts, and external knowledge
from shared links to external sources. However, designing and
maintaining these wide range of features from the rich and
evolving information present in social media is non-trivial.

In this work, we address the pressing problem of automatic
prediction of veracity of a story around which reactions of

*Work done while interning in School of Computing, NUS

the social media users are still unfolding. We argue that
when a news item starts spreading over social media, peoples’
reactions to it contain clues to its truthfulness. We aim to
model such opinions, and arguments put forward by people in
order to resolve the veracity of a rumor.

Figure 1 shows a sample conversation on Twitter with a
source tweet mentioning an event. The subsequent tweets
reply either directly to the source tweet, or to other tweets
in the conversation. Each tweet in a conversation can be of
type support, deny, query or comment depending on its stance
towards the rumor. There is a veracity label for the whole
conversation indicating whether the rumor is true, false or
unverified.

Fig. 1: Sample tweet conversation structure on a rumor claiming ISIS
involvement in an attack in Sydney.

We propose a two-step solution to detect the veracity of
rumors.

1) Identify the stances of all the tweets engaging in a
conversation about the rumor.

2) Aggregate the individual tweet stances to predict the
rumor’s veracity.

The stance prediction component leverages the discourse
around a rumor by detecting how users react to it in forms
of direct/indirect replies. While a person may render direct
support or outright deny a rumor, often people comment
on a possible rumor tweet with additional information or
ask for more information through queries. It is important
to correctly identify these stances, since their distributions
can be distinctive for different classes of rumors e.g. false

rumors tend to evoke a lot more deny and query tweets
than a rumor which is true. To this end, we design a novel
neural architecture for predicting the stances that considers
the conversation tree structure, i.e., the textual content of the
target tweet, its timestamp, as well as its context.

To encode the textual content of a tweet, we employ
convolutional neural networks inspired by their recent success
for natural language processing tasks [7], [8], [9], [10], [11].
We further augment it with attention layer to help the network
focus on parts of a tweet that are important for identifying its
stance. However, due to the short and conversational nature
of tweets, using only the tweet text is often not sufficient
to understand its stance, e.g., the tweet “No she can’t cos
it’s actually not” in Figure 1. Since this is in response to an
ongoing conversation, looking at its preceding tweet “Sorry-
how do you know it’s an ISIS flag? Can you actually confirm
that? ”, makes its stance clear. We account for the context
of a target tweet by taking into consideration all its preceding
tweets in the reply chain of a conversation tree. The sequential
nature of conversation is captured through a recurrent neural
network (RNN) due to its superiority in handling sequential
data. Additionally, we observe that not all tweets preceding a
target tweet is equally important in understanding its stance.
Therefore, we include a tweet-level attention mechanism to
help the RNN focus on the relevant parts of the conversation.

To the best of our knowledge, this is the first work that uses
two-level attention over textual content as well as at the tweet-
level to encode the conversational nature of a tweet in order
to understand its stance and in turn predict rumor veracity.

After predicting the stances of all the tweets in a conversa-
tion tree, we aggregate the predictions along with the textual
contents of the tweets to determine the rumor veracity. We
analyze several methods of combining the stance prediction
component with the veracity prediction step. We optimize
the combined network using a transfer learning approach
with full fine tuning of the weights learned in the first step.
Experimental results on a real-world dataset from Twitter show
that our approach significantly outperforms other competitive
methods for both stance prediction and veracity classification.

II. PRELIMINARIES

We use a dataset published as part of the PHEME project
[12]. This dataset is subsequently used in a SemEval 2017 task
[13]. The data contains online conversations on Twitter, each
pertaining to a particular event and the rumors around it.

Each conversation forms a tree T as shown in Figure 2. The
root node A is a source tweet that initiated the discussion. A
directed edge denotes the reply of a tweet to its parent tweet.
Each tweet is associated with a timestamp at which it has
been posted e.g., tweet C is posted at tsC . The conversation
sequence of a tweet is defined by the chain of tweets starting
from its parent and going all the way up to the source tweet.,
e.g., the conversation sequence for tweet I is {A,D,F}.

To understand the importance of people’s stances in deter-
mining the veracity of a rumor, we first look at the distribution
of stances of tweets concerning rumors of different veracity.

Fig. 2: Sample tweet conversation tree.

False True Unverified
Comment 63.26 63.86 65.32
Support 18.93 22.18 18.46
Deny 11.71 5.99 7.52
Query 6.10 7.96 8.70

TABLE I: Stance distribution of tweets in conversation trees of
different types of rumors.

As we can see from Table I, the distribution of stances for
different types of rumor are quite discriminating. For example,
number of support tweets are higher for a true rumor whereas
higher number of deny tweets are sparked for a rumor which
later turned out to be false. Rumors that remained unverified
have a greater percentage of query tweets.

III. PROPOSED SOLUTION

Motivated by our observation of the discriminating stance
distribution for different types of rumors, we design a two-
step solution that takes into consideration the Conversation
Tree structure. The first step predicts the stances of individual
tweets via CT-Stance. The second step aggregates the predicted
stances via CT-Veracity.

A. Stance Prediction

We consider three signals for a target tweet: textual content,
conversation sequence, and the timestamp that the tweet is
posted. Figure 3 shows the overall architecture for our stance
predictor model CT-Stance.

Fig. 3: Architecture of CT-Stance.

Fig. 4: Text Encoder.

Each tweet is first encoded by a CNN-based text encoder,
and an RNN-based conversation sequence encoder is used
to represent the context of the target tweet. The encoded
representations of the signals are thereafter used for prediction.
Details of the network components are given below.
Tweet Text Encoder We first encode the text of an in-
dividual tweet t, denoted as a collection of words t =
{w1, w2, · · · , wn}. Figure 4 shows the text encoder.

Each word is embedded in a lower dimensional space so
that a tweet is now represented as a sequence of word vectors
{v1,v2, · · · ,vn} where vi ∈ Rd. We initialize the word
vectors using pre-trained Glove embeddings [14] but tune it
during training to capture the intrinsic features of the specific
task at hand.

We apply a one dimensional convolution followed by a
tanh non-linearity on the sequence of word vectors. The
convolutional kernel is parameterized by W ∈ Rd×l, b ∈ R
where d is the dimension of a word and l is the filter length.
It processes l consecutive word vectors and maps them to a
single output which can be used as a feature. For example, a
feature ci is generated from a window of words vi:i+l−1 by

ci = tanh(W.vi:i+l−1 + b) (1)

The kernel slides over the embedded vectors of each l-gram
and produces a map of features c = [c1, c2, ..., cn−l+1] as the
output. The output is padded to make its length the same as
the input length i.e. n.

Traditionally, a standard max-over-time pooling operation
[15] is performed over the feature map to produce the single
most important feature. However, multiple non-consecutive
sections of a tweet could be important in understanding its
stance, making max pooling insufficient.

In order to identify the parts of a tweet that are important in
determining its stance, we use a self-attention [16] mechanism

over the output of the convolutional layers. For each l-gram
vi:i+l−1, we compute a weight ai to determine the contribution
of its corresponding feature vector ci to the stance of the whole
tweet and get an attention vector a = {a1, a2, · · · , an} as

a = softmax(tanh(W.c)) (2)

The tweet representation for a kernel j is computed as:

xj =

n∑
i

aici (3)

We use three different filter lengths (l ∈ {2, 3, 4}) and 128
such kernels for each filter length to detect multiple features
and concatenate all extracted features to get the final tweet
text representation denoted as xt.
Conversation Sequence Encoder Next, we encode the pre-
ceding tweets in the conversation sequence of a target tweet
t by using a bi-directional RNN. The input to the bi-
directional RNN is the encoded tweet text representations
{x1,x2, · · · ,xt−1}. Figure 5 shows the conversation se-
quence encoder.

The RNN reads the sequence in left to right direction in
the forward pass and creates a sequence of hidden states
{h1

f ,h
2
f , · · · ,h

t−1
f }, where hi

f = RNN(xi,hi−1
f) is a func-

tion for which we use a GRU [17]. In the backward pass,
it reads the input sequence in reverse order and returns a
sequence of hidden states {ht−1

b ,ht−2
b , · · · ,h1

b}. The forward
and backward hidden states are then concatenated to create
the encoded hidden state of a context tweet hi = [hi

f ;h
i
b]

considering all its surrounding tweets.
We experimented with replacing GRU by LSTM [18] which

resulted in similar performance at the cost of longer training
time due to larger number of parameters. We use stacked bi-
directional GRUs where the output hidden states of a layer are

Fig. 5: Conversation Sequence Encoder

fed as input sequence to the next layer. The output of the last
such layer is considered as the feature vector for the context
of the target tweet.

We apply a tweet-level attention over the conversation
sequence to focus on the important tweets in the conversation.
We compute the context attention weights aci for the feature
vector hi corresponding to each tweet in the conversation
sequence. The attention vector ac = {ac1, ac2, · · · , act−1} is
then multiplied with the corresponding features hi, and a
weighted sum is calculated (similar to Equation 3) to get the
context representation rt.

Temporal Signal Encoder. The time elapsed since the source
tweet could influence the type of response tweets it gener-
ates. For example, when an unverified news emerges, people
typically voice their opinions from pre-conceived notions and
the limited evidences available at that time to support or deny
the claim. However, as time progresses and more evidences
come in, we observe that people try to reason and evaluate
the repercussions of the event by commenting on earlier tweets
with posts like ‘why this outrage let’s calm down’ , ‘no one
would care if a white kid was shot but now people care because
he is black’, ‘maybe he left his Taser in the car and so he used
his gun’ and so on.

To study this observation further, we plot the percentage of
tweets belonging to the majority two stance classes (comment
and support) arriving within varying time windows. Figure 6
shows that as more time elapses since the source tweet, the
percentage of reply tweets commenting on the rumor increases
while the percentage of support decreases. This motivates us
to use the temporal information as a signal in our network.
For a target tweet t, we encode its temporal feature tst as the
difference (in seconds) between the posting time of the source
tweet and that of the target tweet.

CT-Stance Predictor Given a target tweet t, we concatenate
its text representation xt, its context representation rt, and
temporal feature tst to form the final tweet representation
zt = [xt; rt; tst]. The vector zt is fed through stacked fully

Fig. 6: Distributions of tweets belonging to comment and support
class over time. Dotted lines show the trends that with time comments
increase while percentage of support decreases.

connected layers and the output of the last layer is passed
through a softmax layer to output a probability distribution
over the four stance classes.

p(yt
stance|zt) = softmax(W.zt + b) (4)

where yt
stance is the probability distribution over the four

stance classes for the tweet t. The model is trained using cross-
entropy loss function and optimized with Adam optimizer [19].

B. Veracity Prediction

In order to classify the veracity of a rumor, we take as
input a complete conversation tree T (recall Figure 2). Based
on the conversation tree, each individual tweet t (its textual
content and timestamp) and its conversation sequence is first
fed through CT-Stance to obtain the probability distribution
over stances for each tweet, denoted as yt

stance. Figure 7
shows the architecture of the veracity classification model CT-
Veracity.

The probability distribution over four stance classes of
individual tweets are then averaged to obtain a probability

Fig. 7: Architecture of CT-Veracity. Each row in the table shows the conversation sequence for a target tweet from the conversation tree.

distribution over stances for the complete tree.

yT
stance =

1

|T |
∗
∑
t∈T

yt
stance (5)

where |T | denotes the number of tweets in T .
Apart from the output stance probability distribution, the

stance predictor component learns a tweet text representation
xt for each tweet t in T . We combine these individual tweet
representations to form a textual representation of T by taking
an average,

xT =
1

|T |
∗
∑
t∈T

xt (6)

Thereafter, the stance distribution and textual representation
of the tree are concatenated and fed through a fully connected
layer with softmax to predict the veracity of the rumor
discussed in the conversation tree.

yT
veracity = softmax(W.[yT

stance;x
T] + b) (7)

where ; denotes concatenation operation and yT
veracity is the

probability distribution over three veracity classes.
Now we move on to address the coupling of CT-Stance into

the architecture of CT-Veracity model. We first note that the
data for the veracity prediction task is considerably smaller
than the stance prediction task, since there is a single veracity
label for a whole conversation tree in contrast to a label for
each tweet stance. To overcome this challenge we adopt a
transfer learning approach for training CT-Veracity.

In transfer learning, a base network is trained first, and
then the learned features are reused or transferred to a second
network to be trained on a target task. It has proven to be a
powerful learning tool when the target dataset is much smaller
compared to the base dataset. For neural networks, the weights
of the first n layers from a pre-trained base network are copied
to the first n layers of the target network and the remaining
layers of the target network are initialized randomly.

Following this principle we pre-train our base network (CT-
Stance) and copy the corresponding layer weights to our

target network (CT-Veracity). While training CT-Veracity, we
backpropagate the error into the transferred features from CT-
Stance as well, essentially fine-tuning them.

IV. EXPERIMENTS

We carry out a comprehensive set of experiments to evaluate
our proposed solution. We use the online Twitter conversation
dataset of the SemEval 2017 Challenge [13]. The training
dataset consists of tweets spanning eight events such as the
‘Charlie Hebdo shooting in Paris’, ‘The Ferguson unrest in the
US’, and ‘The GermanWings plane crash’ etc. The test data
consists of conversation trees related to some events from the
training set as well as two unseen events. We report the results
after averaging five runs on the test set.

A. Evaluation of CT-Stance

We first compare CT-Stance with the following state-of-the-
art neural stance prediction models that consider different input
signals:
• CNN [20]. This method uses a convolutional neural

network on the target tweet text to predict its stance.
• Branch-LSTM [21]. This method uses the entire conver-

sation tree for predicting stances of each of its nodes.
• CT-Stance−. This is the same as CT-Stance except that

the temporal signal is not used. In other words, it only
considers the target tweet text and the conversation se-
quence.

Table II shows the results. We observe that considering the
target tweet as well as the conversation sequence is impor-
tant in understanding the discourse properly and predicting
its stance. Incorporating the temporal information helps in
boosting the performance further.

We note that, although the branch-LSTM [21] obtains a
competitive score, it uses some input signals which might
not be available in a real-time system. In order to predict
the stance of a tweet, it looks up all the tweets in the tree,
including the ones posted in the future with respect to the
target tweet. On the other hand, our model only uses the

Model Input Signals Accuracy
CNN [20] Target tweet text 70.06%
Branch-LSTM [21] Entire conversation tree (includes future tweets) 78.4%
CT-Stance− Target tweet text, conversation sequence 78.02%
CT-Stance Target tweet text, conversation sequence, time 79.86%

TABLE II: Comparison of Stance Prediction Models that consider different subsets of input signals. Our model CT-Stance achieves the best
performance when considering all three realistically available signals.

Variants of CT-Stance Accuracy
Text Encoder + Concatenation 72.21%
Text Encoder with Attention + Concatenation 74.35%
Text Encoder + Conversation Encoder 77.50%
Text Encoder with Attention + Conversation Encoder 79.17%
CT-Stance (Text Encoder with Attention + Conversation Encoder with Attention) 79.86%

TABLE III: Performance of architecture variants of CT-Stance. Using a sequence encoder for the conversation greatly improves the accuracy
compared to simple concatenation. The model achieves the best scores with the use of attention at both text and tweet levels.

Model Input Signals Accuracy
GRU-2 [22] Tweet texts 45.85%
CAMI [23] Tweet texts 50.0%
Bi-GRU-2 Tweet stances (ground truth) 50.57%
CT-Veracity Tweet texts, tweet stances (predicted by CT-Stance) 57.14%

TABLE IV: Comparison of Rumor Veracity Prediction Models. This demonstrates the effectiveness of tweet stances in determining a rumor’s
veracity. Our CT-Veracity model achieves the best performance compared to the state-of-the-art rumor detection methods.

preceding tweets in the conversation sequence for predict-
ing stance of a target tweet, which is more realistic. From
the results, we can observe that in comparison to branch-
LSTM, our model achieves comparable scores using only the
realistically available conversation sequence (CT-Stance−) and
outperforms using temporal information (CT-Stance).

Next, we investigate the effectiveness of the various com-
ponents in CT-Stance by implementing the following variants:
• Text Encoder + Concatenation. We use the convolution

layers as the text encoder and concatenate the hidden text
representations to form the conversation sequence.

• Text Encoder with Attention + Concatenation. We use
the convolution layers with attention as text encoder and
concatenate the hidden text representations to form the
conversation sequence.

• Text Encoder + Conversation Encoder. We use convolu-
tion layers as text encoder and use 2 layers of stacked
Bidirectional GRU as conversation sequence encoder.

• Text Encoder with Attention + Conversation Encoder
with attention. We use the convolution layers with at-
tention as text encoder and use 2 layers of stacked
Bidirectional GRU as conversation sequence encoder.

For fair comparison, the final prediction layers and the input
signals for all the variants are kept identical.

Table III shows the results. As we can see from the results,
encoding the conversation sequence properly using bidirec-
tional GRUs produces a huge improvement over a simple
concatenation. This is in line with most of the recent works
that have found the efficacy of RNNs in sequence repre-
sentation across domains. We also note that using attention
mechanism further boosts the performance by enabling the

model to concentrate on important parts for stance prediction.

B. Evaluation of CT-Veracity

Veracity is a three class (true, false, unverified) classification
task and we use accuracy as its performance metric.

We compare CT-Veracity with the following state-of-the-art
rumor detection approaches:

• GRU-2 [22]. This uses two stacked GRU layers to encode
the sequence of textual contents of tweets being posted
about the rumor.

• CAMI [23]. This uses convolutional neural network to
encode consecutive tweets of an event.

We note that these previous works addressing similar tasks
have modeled the tweet texts directly for veracity prediction,
without considering a tweet’s stance, unlike our approach.
Therefore, we also design the following baseline to investigate
if knowing the ground truth stances of tweets helps improve
the accuracy of veracity prediction.

• Bi-GRU-2. This is a baseline that considers only the
sequence of ground truth stances for the tweets and use
two layers of stacked Bidirectional GRU to encode it.
This baseline demonstrates the rumor detection accuracy
achievable by only considering stances of tweets.

We make two key observations from the results shown in
Table IV. Firstly, we observe that the ability to detect rumors is
greatly benefited by directly considering the stances of tweets
compared to only its textual contents as demonstrated by
baseline Bi-GRU-2. Secondly, CT-Veracity model outperforms
the competitive methods comfortably by considering both the
stances as well as the tweet contents.

As the CT-Veracity model considers the predicted stances of
tweets, the accuracy of the CT-Stance model and their coupling
plays an important role in determining the overall accuracy.

In the next set of experiments, we investigate how the
coupling strategy can influence the CT-Veracity model per-
formance by evaluating multiple alternatives.

We consider the following,

• Pipeline model. We train the CT-Stance model first.
Thereafter, we use the predicted stances from it, and the
encoded text representations of the tweets from the text
encoder component as input to CT-Veracity.

• Joint model. We train a single model using a multi-
objective loss function that optimizes both the stance
prediction and veracity prediction tasks together.

• Transfer learning with frozen weights. We train CT-
Stance first and copy the weights of the corresponding
layers in the complete model. The weights of the text
encoder component are kept frozen during the training
of CT-Veracity. This is a prevalent practice for training
on smaller datasets, to avoid learning those parameters
which are already learnt well in another task in order to
avoid overfitting [24].

Method Accuracy
Pipeline model 41.23%
Joint model 44.45%
Transfer learning with frozen weights 50.15%
CT-Veracity (Transfer learning with fine tuning) 57.14%

TABLE V: Performance of Variants of CT-Veracity.

Table V shows the results. We firstly observe that the
transfer learning based approaches outperform both the joint
and the pipeline model. This is due to (i) the dependency
between stance prediction and veracity prediction tasks, and
(ii) imbalance between dataset sizes. For the joint model,
the network tries to optimize both objectives together, and
learns a sub-optimal stance prediction model possibly due
to overfitting on the veracity prediction task. In the pipeline
model, since CT-Stance is trained independently, the overall
stance prediction accuracy is the best. However, the recall
for the under-represented stance classes (query, deny) are
lower than the majority classes (comment, support). This
affects the veracity prediction accuracy since they are the most
discriminative classes for determining rumors (as shown in
Table I).

On the contrary, as the transfer learning with fine tuning
approach is able to change the weights in stance prediction
component, the overall accuracy of the stance prediction
component decreases slightly but recall for the other three
classes increase significantly. This helps in achieving high
accuracy for veracity prediction. We note that by freezing the
transferred weights, it becomes non-trivial for gradient-descent
to optimize a network that has been split in-between. This
can be attributed to task-specific co-adaptation of neighboring
layers [24].

C. Case Study

Finally, we present a study for different cases of rumor
detection successfully handled by our model. Figure 8 shows
the conversation trees within the first few minutes for two
different types of rumors.

In Figure 8(a), a rumor regarding ‘Charlie Hebdo shooting
in Paris’ is presented. We observe that the responding tweets
mostly are expressing solidarity or voicing personal opinions,
but are not raising questions regarding the event. Hence our
model predicted its veracity to be true.

In Figure 8(b), a false rumor about the ‘final distress
call from Flight 4U9525’ is depicted. We observe that some
people respond by expressing doubts regarding the nature
of the distress call mentioned in the source tweet. These
initiate a conversation where people start pointing out the
inconsistencies in the reported information invoking further
queries and denials. Considering this conversation structure
and the presence of many deny tweets our model successfully
predicts it to be a false rumor.

(a) True Rumor

(b) False Rumor

Fig. 8: Illustration for conversation trees for two rumors within the
first few minutes. The unit of time is in seconds on the time-line.

V. RELATED WORK

Research on rumor veracity have utilized hand-crafted fea-
tures such as posting and re-tweeting behavior, textual content
and links to external sources [3], [4], [5], [6]. In the recent

SemEval 2017 Challenge [13], many have used hand crafted
feature-based approaches to tackle the task of rumor detection
in conjunction with stance prediction [25], [26], [27], [28].

Several works have examined using propagation patterns
to detect rumors [29], [30], [31]. The cascading spread of
misinformation in Facebook through photos and their captions,
have been studied by analyzing comments linking to rumor
debunking websites [32]. In [29], [30], a time-series model
captures the periodic bursts in volume particular to false ru-
mors whereas [31] use tree kernels to capture the propagation
pattern.

The work in [33] considers the enquiring reactions of
people to detect rumours. However, they use a handful of cue
terms such as ‘not true’, ‘unconfirmed’ or ‘debunk’ to find
questioning and denying tweets. [34] employ Hawkes process
to use both stance and temporal information of tweets but
disregard their conversation structure.

Advances in deep learning have motivated researchers to
explore solutions for the rumor debunking problem using
recurrent neural networks [22] and convolutional neural net-
works [23]. [22] use the temporal sequence of tweets as a
variable length time series and represent them using stacked
Gated Recurrent Units (GRU) [17]. [23] use CNN instead
of GRU for the task. These deep learning based methods
outperform hand-crafted feature based methods due to their
ability to model higher dimensional complex interactions be-
tween the underlying features. However, none of them utilizes
the conversational context of tweets to analyze their stances
towards a rumor and determine its veracity.

VI. CONCLUSION

In this work, we have examined the problem of rumor
detection from analyzing the conversations sparked around
an event on social media. To this end, we have designed
a neural network architecture that captures the stances of
peoples’ posts towards the rumor and accumulates them in
order to predict its veracity. We employ convolution with
attention mechanism to encode a tweet’s textual content and
use RNN with tweet-level attention mechanism to capture the
conversation sequence. Experimental results on a real-world
Twitter dataset demonstrate that our stance prediction model
outperforms state-of the art models. Additionally, coupling the
stance prediction model with the veracity classification model
using transfer learning with full fine tuning achieves significant
improvement over state-of-the-art rumor detection methods.

REFERENCES

[1] M. Barthell, E. Shearer, J. Gottfried, and A. Mitchell, “The evolving
role of news on twitter and facebook,” http://www.journalism.org/2015/
07/14/the-evolving-role-of-news-on-twitter-and-facebook/, 2015.

[2] V. Qazvinian, E. Rosengren, D. R. Radev, and Q. Mei, “Rumor has it:
Identifying misinformation in microblogs,” in EMNLP, 2011.

[3] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility on
twitter,” in WWW, 2011.

[4] F. Yang, Y. Liu, X. Yu, and M. Yang, “Automatic detection of rumor on
sina weibo,” in SIGKDD Workshop on Mining Data Semantics, 2012.

[5] S. Sun, H. Liu, J. He, and X. Du, “Detecting event rumors on sina weibo
automatically,” in Asia-Pacific Web Conference. Springer, 2013.

[6] X. Liu, A. Nourbakhsh, Q. Li, R. Fang, and S. Shah, “Real-time rumor
debunking on twitter,” in CIKM, 2015.

[7] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[8] S. W.-t. Yih, X. He, and C. Meek, “Semantic parsing for single-relation
question answering,” in ACL, 2014.

[9] F. Meng, Z. Lu, M. Wang, H. Li, W. Jiang, and Q. Liu, “Encoding source
language with convolutional neural network for machine translation,” in
ACL-IJCNLP, 2015.

[10] Y. Gong and Q. Zhang, “Hashtag recommendation using attention-based
convolutional neural network.” in IJCAI, 2016.

[11] L. Zhining, G. Xiaozhuo, Z. Quan, and X. Taizhong, “Combining
statistics-based and cnn-based information for sentence classification,”
in ICTAI. IEEE, 2016.

[12] L. Derczynski and K. Bontcheva, “Pheme: Veracity in digital social
networks.” in UMAP Workshops, 2014.

[13] L. Derczynski, K. Bontcheva, M. Liakata, R. Procter, G. W. S. Hoi, and
A. Zubiaga, “Semeval-2017 task 8: Rumoureval: Determining rumour
veracity and support for rumours,” arXiv preprint arXiv:1704.05972,
2017.

[14] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in EMNLP, 2014.

[15] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, 2011.

[16] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” ICLR,
2017.

[17] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” Proceedings
of NIPS Deep Learning and Representation Learning Workshop, 2014.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, 1997.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[20] Y.-C. Chen, Z.-Y. Liu, and H.-Y. Kao, “Ikm at semeval-2017 task 8:
Convolutional neural networks for stance detection and rumor verifica-
tion,” in Workshop on Semantic Evaluation (SemEval-2017), 2017.

[21] E. Kochkina, M. Liakata, and I. Augenstein, “Turing at semeval-2017
task 8: Sequential approach to rumour stance classification with branch-
lstm,” arXiv preprint arXiv:1704.07221, 2017.

[22] J. Ma, W. Gao, P. Mitra, S. Kwon, B. J. Jansen, K.-F. Wong, and M. Cha,
“Detecting rumors from microblogs with recurrent neural networks.” in
IJCAI, 2016.

[23] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan, “A convolutional approach
for misinformation identification,” in IJCAI, 2017.

[24] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NIPS, 2014.

[25] A. Srivastava, G. Rehm, and J. M. Schneider, “Dfki-dkt at semeval-2017
task 8: rumour detection and classification using cascading heuristics,”
in Workshop on Semantic Evaluation (SemEval-2017), 2017.

[26] V. Singh, S. Narayan, M. S. Akhtar, A. Ekbal, and P. Bhattacharyya, “Iitp
at semeval-2017 task 8: A supervised approach for rumour evaluation,”
in Workshop on Semantic Evaluation (SemEval-2017), 2017.

[27] F. Wang, M. Lan, and Y. Wu, “Ecnu at semeval-2017 task 8: Rumour
evaluation using effective features and supervised ensemble models,” in
Workshop on Semantic Evaluation (SemEval-2017), 2017.

[28] O. Enayet and S. R. El-Beltagy, “Niletmrg at semeval-2017 task 8:
Determining rumour and veracity support for rumours on twitter.” in
Workshop on Semantic Evaluation (SemEval-2017), 2017.

[29] S. Kwon, M. Cha, K. Jung, W. Chen, and Y. Wang, “Prominent features
of rumor propagation in online social media,” in ICDM, 2013.

[30] S. Kwon, M. Cha, and K. Jung, “Rumor detection over varying time
windows,” PloS one, 2017.

[31] J. Ma, W. Gao, and K.-F. Wong, “Detect rumors in microblog posts
using propagation structure via kernel learning,” in ACL, 2017.

[32] A. Friggeri, L. A. Adamic, D. Eckles, and J. Cheng, “Rumor cascades.”
in ICWSM, 2014.

[33] Z. Zhao, P. Resnick, and Q. Mei, “Enquiring minds: Early detection of
rumors in social media from enquiry posts,” in WWW, 2015.

[34] M. Lukasik, P. Srijith, D. Vu, K. Bontcheva, A. Zubiaga, and T. Cohn,
“Hawkes processes for continuous time sequence classification: an
application to rumour stance classification in twitter,” in ACL, 2016.

