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Abstract
User Generated Content (UGC) in forms of reviews, numeric ratings, blogs, posts in fo-
rum and social media are present in an overwhelming amount to help users make informed
decisions about various products or services. Even though helpful, unfortunately many of
these posts are not accurate, and might be biased by an individual’s opinion or idiosyn-
cratic experiences. This limits their usability as general reliable information sources. As
opposed to prior work on binary truth discovery, we argue that UGC can not be judged
by such a harsh universal lens of credibility; due to the fine grained subjectivity present in
them owing to individual preferences. We also believe that the nature of UGC is strongly
domain-dependent and it is crucial to capture the domain-specific nuances for modelling
user feedbacks properly.

In this thesis, we focus on a few widely popular domains where people increasingly
rely on UGC, namely, e-commerce/services and e-health. In these domains people can
share their feedback on an entity (e.g. products in e-commerce, hotels or restaurants in
services, drugs and treatments in health forums) in various forms (such as ratings, reviews,
posts, lists of observed side effects). We hypothesize that such user feedbacks might
be influenced by some underlying confounding factors, that make one user’s experience
different from another, even for the same entity. Faced with such varying opinions about
the same entity, it becomes difficult for a person to make a decision about its quality. For
instance, in the context of products, when one looks at conflicting ratings given by users
on different aspects of an item, he/she needs to be aware of the biases which influenced
their ratings, to estimate the true quality of the item. While going through diverse reviews
written by strangers, it is important to know whether a particular opinion expressed in a
review is prevalent or rare, before relying on it completely. For health-related information,
having a long list of side effects associated with a particular drug, reported by various
people with diverse backgrounds, is confusing and intimidating for a person to whom
they might not even apply. In social media where people freely argue and voice their
opinions on recent events, it is essential to know the veracity of their claims to prevent
being mislead by unreliable information.

We propose a range of data driven methods to automatically handle such inherent sub-
jectivity in user opinions, and identify the roles of the confounding factors behind the
observed UGC footprint. We devise new frameworks based on probabilistic graphical
models as well as neural networks accordingly. We have validated our models by using
them for practical applications such as, (1) quantifying the aspect biases of users to better
interpret their observed ratings, (2) retrieving supporting reviews for an individual’s opin-
ion to facilitate consensus modeling, (3) predicting user specific drug side effects, and
(4) detecting veracity of rumors on social media. Experimental evaluation on a number
of real world datasets show the effectiveness of our models for handling user generated
content and sets new benchmarks across domains.
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Chapter 1

Introduction

User Generated Content (UGC) has now become prevalent due to the rise of social media

(e.g. Facebook, Twitter), online review portals (e.g. Amazon, Yelp, TripAdvisor), and

forums (StackOverflow, HealthBoard), which facilitate sharing of information on a wide

range of topics like health, politics, movies, products, travel, and more. Before making a

decision, it is natural for a person to seek opinions from others who have done it before.

Previously, we asked people around us, now we rely on online UGC from strangers. A re-

cent survey [6] found that 86% of the respondents feel UGC is generally a good indicator

of the quality of a brand, service, or products. A high percentage of people do not com-

plete various purchases without consulting UGC, including major electronics (44%) and

cars (40%), as well as hotel stays (39%), and travel to specific destinations (32%). Even

for medical information, online health communities constitute an important source, with

59% of the adult US population seeking health-related information from online resources

[25], and nearly half of US physicians relying on them for professional use [24].

1.1 Motivation

The open nature of UGC platforms attracts a lot of users to express their opinions freely

and share with others. These platforms have facilitated democratization of content pro-

duction; earlier traditional “gatekeepers” such as newspaper editors and publishers had to

approve all content and information before it could be published. Now with the advent of

1



CHAPTER 1. INTRODUCTION

web technology, large numbers of individuals are able to freely post their opinions and ex-

periences online, with little or no filters. Therefore, the generated content could be highly

noisy, unreliable [76], subjective, spams [74, 80] or even rumors [65]. This brings us to

an important question and the central theme of this thesis.

How can this vast amount of information be reliably used?

Answering this question requires a systematic study of information reliability across

many domains that allow user generated content. There exist different lines of research

work that try to tackle this problem in part. Existing work regarding credibility analysis

tries to assess the binary truth regarding an entity. These methods try to automatically

classify claims in true vs. false [94], reviews in spam vs. genuine [74], posts in decep-

tive vs. real [51], reported side effects in substantiated vs. unsubstantiated [76]. We

acknowledge that such binary credibility problems exist in these platforms and it is neces-

sary to first filter out such intentionally misleading or deceptive information, but it is also

important to to go one step further.

“Two people can look at the exact same thing and see something totally different.”

Different people come from different backgrounds, have different preferences and

can have completely different experiences with same entity. We argue that even genuine

opinions expressed in a ‘real’ user’s post may still not generalize and be applicable for

everyone. Issues of information reliability in online UGC have not been studied much

in literature in light of this varying user experiences. In this thesis we primarily wish to

focus on the inherent biases and individual experiences present in a user’s feedback that

makes it difficult to accept that as a universal fact and therefore limits its usability as a

general information source. We want to devise methods and mechanisms that can help

information seekers use the information present in UGC reliably in light of the individual

subjectivity.

We hypothesize that there are some confounding factors that determine a user’s ex-

perience with an entity and thus influence her feedback. We aim to learn and incorporate

2
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these factors into our Machine Learning based models, to help an information seeker gain

better insights from tons of UGC available on the web. In light of the confounding factors,

the diverse feedback from users would be easier to interpret for the information seekers

and they would be able to decide which feedback to rely on.

Depending on the domain, these confounding factors could be quite distinct from each

other. Let us provide more context around this by a few illustrations.

(1) Consider the user feedbacks left in forms of reviews and ratings by various users

on e-commerce websites like Amazon, Ebay or websites for hotels or restaurants like

TripAdvisor, Yelp. The confounding factor here could be a user’s preferences or

biases for different aspects of an item, that determine a user’s expectations from the item

and in turn affect their experience. For example, for a user if cleanliness of a hotel is most

important, her rating or comments on that aspect is likely to be more critical compared

to her opinion on other aspects. For different users these biases might be different, hence

their feedback on the same hotel would look very different from one another. This makes

it very difficult for an information seeker to interpret these conflicting ratings without

knowing the underlying user biases. Learning about these biases would help interpret a

user’s review or rating better and enable a person to make an informed decision regarding

which opinions to rely on.

In addition to the overall experience captured in explicit numeric ratings, the textual

reviews express user opinions at a finer granularity. People often leave specific feedback

regarding the things they did or did not like about an entity. For example, for a hotel these

can range from a leaky tap in the bathroom, or spotting a bed bug or annoying noises

from a construction nearby, to the wide variety of tropical fruits available in the breakfast

menu and so on. If a person is considering booking a hotel and comes across a review

mentioning for e.g. a poor experience with housekeeping service, then it is important for

her to know if that was an occasional problem or happens frequently with other guests or

the particular user generally has higher expectations from service of a hotel. Given the

large volume of reviews, it is impossible for an individual to go through all the posts in

order to determine whether the opinion or complaint is frequent or biased. A framework

3
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that can assist a person to look for consensus around a particular opinion expressed in a

review will enable her to verify whether it is prevalent.

(2) In online health forums, users describe their experiences with an entity such as

drug or a treatment in terms of their effectiveness and observed symptoms or side effects.

However, the experienced symptoms could be widely different for different patients de-

pending on some confounding factors, like, their demographic profile, existing medical

conditions or other concurrent drug usage. This will make it very difficult for a user with

no medical training, to accurately claim a symptom as a side effect of a drug. Such reports

could also cause anxiety among people trying to learn about drug side effects through web

search before deciding to consume a medicine. Knowing about the likely side effects that

can occur for a patient, given her medical conditions, would help people make informed

decisions when choosing between alternate treatments.

1.2 Contributions

These real-world challenges motivate us to develop solutions for addressing the reliability

concerns inherent to using information from User Generated Content. However, we real-

ize that it is infeasible to build a universal solution that can handle all sorts of UGC, due to

the aforementioned domain-specific nuances. Guided by our key hypothesis around user

subjectivity, we develop data-driven solutions using probabilistic graphical models and

neural network architectures for modeling UGC, tailored to the specific domain at hand.

This thesis is a step towards alleviating the above-mentioned issues in this complex

and pressing task of reliable use of information in the following major UGC domains.

e-Commerce: We aim to uncover the effect of users’ latent aspect preferences or

biases that affect their ratings. We hypothesize a user’s rating for an aspect (e.g. service)

of an item (e.g. hotel), depends on both the user’s bias of the aspect and the quality of

the item for that aspect. We develop a probabilistic graphical model (AspectBias) for the

observed aspect ratings that jointly infers each user’s aspect bias and the latent intrinsic

quality of an item. We introduce latent user groups in our model that leverages similarity

4
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of preferences among different sets of users, to deal with the data sparsity issue com-

monly observed in e-commerce platforms. Our model also overcomes two key limitations

of prior work on modeling aspect ratings by (i) encoding the correlation among aspects

through multivariate Gaussian distributions, and (ii) modeling the proper ordinal nature

of user ratings through proper statistical formulation. We describe our proposed approach

and its evaluations in detail in Chapter 3.

In our next chapter (Chapter 4), we aim to capture the fine grained opinion expressed

in reviews in order to build a framework that can help a user verify whether an opinion

is prevalent. Unlike ratings, people express specific feedback on many aspects of an item

in their reviews through unstructured and noisy text with varying vocabulary. This makes

it a challenging problem to capture opinions and determine their ‘equivalence’ to one an-

other for consensus modeling. We first develop an Author-aware Aspect Topic Sentiment

model (Author-ATS) for capturing opinions expressed in a review. In contrast to existing

document topic models, our approach is suitably designed for capturing opinions by using

hierarchical probabilistic modeling of text that assumes each word in a review expresses

a sentiment towards some aspect of an entity. This model also encodes the characteristics

of the author by considering (i) their aspect bias and (ii) the natural coherent writing style

of reviews. By using the opinion model learned by Author-ATS, we further develop a

framework (SURF) that helps in finding supporting reviews for a target opinion in order

to facilitate consensus modeling.

e-Health: In this chapter of the thesis we focus on uncovering the confounding fac-

tors behind people’s varying experiences with the same medical treatment. From a real

world dataset collected from a health tracking app, we observe that different people ex-

perience different symptoms with varying degree of severity while undergoing the same

treatment. Apart from the drug, they could potentially stem from multiple confounding

factors such as the characteristics of the patients, her existing medical conditions, con-

current drug usage etc. We conduct an initial study and find that among the symptoms

reported by users, there exists a significant percentage of unsubstantiated (not associated

with the drug as per expert medical knowledge base side effects). We further find that
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many of these side effects are, in fact, more correlated to the underlying medical condi-

tion(s) of the user than the drug for which they are reported. This motivates us to model

this complex relationship between a user, her pre-existing medical condition(s) and the

treatment(s) to better understand the symptoms she might expect. We develop a neural

architecture, namely Multi Objective Mixture of Experts (MoMEx) for personalized pre-

diction of the side effects and their severity score based on the interaction between user,

drug, and conditions. Our architecture considers the role of these three confounding fac-

tors and probabilistically combines their predictions using a gating network. This allows

us further insights into the decision making of the model to provide explanation for why

the model predicts a certain symptom for a user. We describe this in detail in Chapter 5.

Social Media: Apart from the subjectivity issues present in the domains discussed

above, we realize that the reliability problem also exists for factoid UGC platforms.

Lately, due to the popularity of social media and its huge network effects, arresting the

spread of misinformation in open platforms like Twitter and Facebook has demanded ur-

gent research attention [127, 29, 2]. We dedicate the last chapter of this thesis (Chapter

6) towards tackling the information reliability problem in an open domain platform like

social media. We propose to use the wisdom of crowds in order to build a framework

for early detection of rumors. We notice that when an unverified news start spreading

while a lot of people merely comment or blindly support the story, some people point out

discrepancies or raise questions or doubts on the authenticity of its source or point out

discrepancies in the story. Mining these discussions around the story and leveraging the

wisdom of people can help detect a false rumor early. Thus we build a two-stage frame-

work that can determine the veracity of a claim floating around in social media while

using the clues in people’s discussions around it. We first develop a novel neural network

architecture to determine the stances of people engaging in a conversation on Twitter re-

garding a rumor. We then aggregate the stances to predict the veracity of the overall rumor

circulating on social media. This framework should help in flagging false rumor stories

early, before they get widely circulated and become disruptive.

We carry out extensive evaluation of all our models using real world datasets from
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multiple domains such as TripAdvisor, OpenTable, Yelp for e-commerce and

services; a health tracking app named FlareDown for e-Health, and one of most popular

social media Twitter. Experimental results demonstrate the efficacy of our models

with respect to competitive state-of-the-art methods and establish new benchmarks across

domains. We also analyze the outputs of our model with various case studies to illustrate

confounding factors and our ability to model them properly. We further design practical

web applications that can provide insights to users for helping them make better sense of

the conflicting and overwhelming amount of UGC data.

1.3 Organization

The thesis is organized as follows. Chapter 3 describes our approach for modeling the

latent users biases in observed aspect ratings. In Chapter 4. we present our SUpporting

Reviews Framework for consensus modeling. Chapter 5 demonstrates our analysis of

reported side effects in a popular health forum and details of our neural network approach

for predicting the user reported drug side effects by considering confounding factors. In

Chapter 6, our work on developing a neural network architecture for rumor detection is

presented. Finally, we conclude the report in Chapter 7 with summarizing our findings

and outlining few future directions for research.
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Chapter 2

Related Work

This chapter provides an overview of related work in relevant domains, the state-of-the-

art approaches, their background and limitations. We first present some background on

the technical components that we would be using in our models across different chapters.

This is followed by brief descriptions of the other related modeling techniques that we

compare our approaches with.

2.1 Probabilistic Graphical Models

In the following subsections we provide a brief overview of Probabilistic Graphical Mod-

els (PGM), its inference mechanisms and its application to text for topic models. For

readers interested to learn about PGM in-depth, we highly recommend referring to these

comprehensive materials [41, 103].

Probabilistic Graphical Models (PGM) provide a unified framework to capture depen-

dencies between random variables using joint probability distributions. PGM bridges the

concepts of probability and graph theory. It represents the relationship between a set of

variables - where the variables are represented as nodes and their interactions as edges

in a graph. PGMs leverage the local relationships in a graph to factor the complete joint

distribution to more economic conditional distributions. For example, consider there are

n discreet random variables in a graph {x1, x2, · · · , xn}, each of which can take up r dis-

tinct values. Then the complete joint distribution would require rn number of values to
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store and learn, which will be intractable. In a real-world scenario all variables might not

be dependent on every variable in the graph and some variables might be conditionally

independent given a subset of variables. The presence of such dependencies between sub-

sets of variables enables us to factor the graph into smaller sets of variables. The overall

joint distribution can then be computed as the product of these conditional distributions

among subsets of variables.

Graphical Models primarily are of two types: directed graphical models (known as

Bayesian Networks or Directed Acyclic Graph) and undirected graphical models (known

as Markov Random Fields). In this thesis, we focus on Bayesian Networks.

Bayesian Inference

PGMs model the variables and their relationships and can therefore be used to learn the

values of unobserved variables from the rest of the graph. In most real applications of

PGM, an exact inference becomes computationally intractable due to the large number

of connected components in the graph and we need to resort to approximate posterior

inference. There are different algorithms of approximate inference for learning of PGMs.

The two most popular families of inference algorithms are Markov Chain Monte Carlo

(MCMC) Sampling and Variational Inference. MCMC inference approximates a posterior

distribution by drawing a large number of samples from the distribution. Under the family

of MCMC sampling based algorithms, Gibbs Sampling is one of the most widely used

ones.

Gibbs Sampling is an iterative algorithm. In each iteration, it samples a value for

each latent variable, conditioned on other variables. If we continue to do this many

times(iterations), the resulting sample will be a sample from the exact posterior. The rea-

son is that we have defined a Markov chain whose state space are the latent variables and

whose stationary distribution is the posterior. Therefore, after a sufficiently large number

of iterations the marginal distributions of the latent variables will be the exact posterior.

Collapsed Gibbs Sampling is a variant of Gibbs Sampling, where we marginalize some

variables while sampling a variable. This generally leads to a faster convergence. We use
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Figure 2.1: Graphical Model for LDA shown using Plate notation. The outer plate repre-
sents documents(M), while the inner plate represents the N words(w) within a document
generated from topics(z). The greyed variable w is the only observed variable whereas
the others are latent.

Collapsed Gibbs Sampling for inference of our PGMs.

Topic Models

Topic Models apply the principles of PGMs for textual documents to learn about latent

semantic clusters (topics) from sets of documents. Latent Dirichlet Allocation (LDA)[7]

is the pioneering work in topic modeling from text using PGM. LDA assumes that each

document has a distribution of semantic topics and each topic is defined as a distribution

over words.

Let’s assume a collection of documents (D), where each document(d) consists of Nd

words {w + 1, w2, · · · , wNd
}. Figure 2.1 shows the graphical representation of the LDA

model.

LDA assumes the following generative process

• For each topic j, 1  j  k, draw word-topic distribution �j from Dirichlet(�)

• for each document d in D,

– Draw a Multinomial topic mixture ✓d from Dirichlet(↵)

– For each word position i, where 1  i  Nd

⇤ Draw a topic zi from Mulitinomial(✓)

⇤ Draw a word token wi from Multinomial(�), conditioned on zi

where ✓ represents document-topic distribution, � represents word-topic distribution and

k denotes the number of topics.
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LDA has spurred interest in topic models and has inspired a large body of research

works in the following decade on developing advanced topic models for various applica-

tions of text understanding. For modeling different facets of opinionated texts there has

been some advanced topic models proposed in the literature, which we contrast and com-

pare with our proposed model in Chapter 4. Apart from its inability to handle opinions

in text, LDA also makes a number of simplifying assumptions regarding the structure of

a document and the distribution of topics inside a document. Some of these assumptions

we try to relax in our proposed model Author-ATS as described in Section 4.3.

2.2 User Modeling Frameworks

Since we wish to understand the latent user biases and preferences behind the observed

feedback, out work often overlaps with Recommendation Systems (RS). Recommenda-

tion Systems are usually used for commercial purposes for recommending a product (e.g.

Amazon) or movie (e.g. Netflix) or hotel (e.g. Expedia) to a user based on his/her past

preferences expressed through numeric ratings.

Collaborative Filtering

Collaborative Filtering is one of the most popular approaches for building a recommen-

dation system based only on the ratings given by users for different items. It uses a rating

matrix (e.g. shown in Figure 2.2). The basic assumption of collaborative filtering is that

users with similar preferences would like similar items. Therefore, given the past choices

made by the users, the system tries to predict the values of the missing entries in the

matrix.

Non-negative Matrix Factorization (NMF) [54] has been a widely adopted technique

for building collaborative filtering systems. For a rating matrix R with m rows (users) and

n columns (items), NMF factors the matrix in two matrices U 2 m ⇥ k and v 2 k ⇥ n.

This maps the users and items to a shared latent space of dimension k, where the ith user

is represent as the ith row in U matrix, denoted by ui 2 Rk. Similarly the jth item is
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i1 i2 i3 i4

u1 4 2 ? 1

u2 4 ? ? ?

u3 2 3 1 ?

u4 3 ? 5 2

u5 ? 1 ? 2

U
se
rs

Items

Figure 2.2: A sample Rating Matrix consisting of 4 items and 5 users. The numbers in
a matrix cell (i, j) denotes the rating given by the ith user for the jth item. ? denotes
missing entries.

represented by vj 2 Rk. The predicted rating rij of user i for the jth item is computed as

a product of their latent representations,

rij = ui
Tvj (2.1)

One pertaining challenge for user feedback datasets is the data sparsity problem - not

always are a lot of feedback is available from the same user to reliable model their prefer-

ences. CF based methods often suffer due to this challenge. The above described matrix

factorization method have been generalized to probabilistic models, Probabilistic Matrix

Factorization (PMF) [72] and its Bayesian extension BPMF [106]. These probabilistic

approaches can handle data sparsity better and scale linearly with the number of observa-

tions. Another competitive generative model for rating prediction is URP [3]. URP is a

generative collaborative filtering model for rating prediction and learns a rating profile for

modeling a user’s ratings. It has been shown to outperform other mixture based genera-

tive models for the task of rating prediction. SVD++ [49] is one of the most competitive

rating prediction algorithms that merges two powerful concepts in collaborating filtering,

namely, latent factorization and neighborhood approach. Factorization Machines (FM)

[101] combine the advantages of Support Vector Machines with that of latent factoriza-

tion models for general prediction tasks, including rating prediction. These methods are

some of the state-of-the-art rating prediction models across datasets from different do-

mains and we evaluate our proposed models against them. Experimental results show

that our models can comfortably outperform them by modeling the confounding factors
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properly in order to predict the observed ratings.

Neural Collaborative Filtering

One inherent limitation of the traditional CF approaches is its inability to model non-

linear relations between the user and latent factors. Neural Collaborative Filtering (NCF)

[33, 128] builds a collaborative filtering system based on neural networks that can encode

non-linear complex relationship between user and item latent factors. The input layer of

the network consists of user vector and item vector, which are sparse one-hot encoding

of the user and item’s identities. The latent feature vectors of the user (ui) and item (vj)

are then learned using an embedding layer to transform the one-hot vectors to lower-

dimensional representations. These latent vectors are then fed to Multi-Layer Perceptrons

with added non-linearity to make the final prediction. However these models focus on

implicit user feedback for item recommendation instead of rating prediction.

User Modeling in Text

Apart from the Recommendation Systems that work on numeric ratings, there have been

some research work to model user preferences as expressed in their review texts. For

incorporating the author information in a topic model, the User-Sentiment topic model

[137] considers the topic-sentiment distribution of a review from the author perspective.

However, it ignores the characteristics of the entity being reviewed. PDA-LDA [135]

associates its Dirichlet prior distribution with user and item topic factors. The work in

[130] models aspects and sentiments based on the demography of authors. However,

such demographic information are not always available and it cannot model the bias or

preference of an individual. In our proposed models we do not rely on the availability of

further demographic information for a user and rather rely on their past interactions with

other items to model their biases.

14



CHAPTER 2. RELATED WORK

2.3 Information Mining from Online UGC

Credibility Analysis

Online UGC come with a pertinent credibility concern. There has been extensive research

work in the domain of binary truth discovery for resolving conflicting data from multi-

ple sources [57]. They have evolved from determining truth values of structured factual

claims [132, 82, 58] to identifying veracity of unstructured textual claims over the web

[94, 139, 78] in recent years. These approaches consider the linguistic cues in the claim

statement and credibility of the sources to make an assessment. However, the focus of

these works is determining a binary truth (true vs. false) about an entity or story and they

require expert knowledge bases to resolve the same.

Opinion Mining

The study of subjectivity of user feedback is related to the research on opinion mining

from reviews and ratings. There has been substantial research to mine online reviews us-

ing topic models [83, 120, 59, 39, 75, 12]. The Topic Aspect Model (TAM) [83] jointly

discovers aspects and topics from documents. The aspect and topic are independent and

each aspect affects all topics in similar manner. However, in reviews, the topics discussed

are often closely related to an aspect. JTV [120] encodes topic-viewpoint dependency, but

assumes that a document contains only one aspect. MC-LDA [12] employs must-link and

cannot-link constraints to extract coherent aspects but does not consider the sentiment po-

larity of words. JST [59] assumes that there is a single sentiment polarity for a review and

the topics are chosen conditioned on that, while ASUM in [39] assumes that all words in

a sentence are associated with the same topic and sentiment. However, in a realistic sce-

nario sentiments may vary depending on the topics discussed in a review, e.g., an author

might like the location of a hotel but not the service of the staff. We try to incorporate such

dependencies when encoding opinions in our model. There has also been some work that

uses supervision from aspect ratings to model review text like [119, 63, 125]. In contrast

our model for opinion mining from text can learn the latent aspects and their sentiments
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in an unsupervised manner.

Online Health Information

With people turning to online communities to share their health related information, many

research works have focused on detecting Adverse Drug Events or side effects mentions

from post text [136, 79, 40, 22, 88, 55, 31, 114] to augment existing medical knowledge

base. However, there has been increasing concerns regarding the credibility of such on-

line medical claims regarding whether mentioned side effects are truly due to the drug

or not [14, 86]. Recently a few machine learning based solutions have been developed

to identify trustworthy textual claims made in online health communities. A few frame-

works [81, 107] have been developed that automatically assess new health information

with the help of reliable knowledge in external health websites. In [56] the authors en-

hance the framework of truth discovery from multiple sources to incorporate the semantic

meaning of a post text and aim to identify credible claims. In [76] the authors develop

a probabilistic graphical model to infer the credibility of a user statement regarding side

effects of a drug by jointly inferring user trustworthiness and language objectivity of the

textual post. These works also fall into the line of finding a single truth value for a claim.

In contrast, we also appreciate the fact that different people may genuinely experience

different outcomes from the same treatment due to confounding factors like other concur-

rent treatments or their medical conditions and so on. Therefore, it is necessary to model

the patient experiences as a personalized prediction problem in order to understand the

treatment outcomes for different patients.

Social Media

Detecting misinformation on social media has received attention from the research com-

munity recently. Research on determining rumor veracity on social media have utilized

hand-crafted features such as posting and re-tweeting behavior, textual content and links

to external sources [9, 129, 115, 62]. In the recent SemEval 2017 Challenge [18], many

have used hand crafted feature-based approaches to tackle the task of rumor detection in
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conjunction with stance prediction [112, 109, 122, 23]. Several works have examined

using propagation patterns to detect rumors [53, 52, 66]. The cascading spread of misin-

formation in Facebook through photos and their captions, have been studied by analyzing

comments linking to rumor debunking websites [26]. In [53, 52], a time-series model

captures the periodic bursts in volume particular to false rumors whereas [66] use tree

kernels to capture the propagation pattern. The work in [138] considers the enquiring

reactions of people to detect rumours. However, they use a handful of cue terms such as

‘not true’, ‘unconfirmed’ or ‘debunk’ to find questioning and denying tweets. [64] employ

Hawkes process to use both stance and temporal information of tweets but disregard their

conversation structure.

Advances in deep learning have motivated researchers to explore solutions for the ru-

mor debunking problem using recurrent neural networks [65] and convolutional neural

networks [134]. [65] use the temporal sequence of tweets as a variable length time series

and represent them using stacked Gated Recurrent Units (GRU) [13]. [134] use CNN

instead of GRU for the task. These deep learning based methods outperform hand-crafted

feature based methods due to their ability to model higher dimensional complex interac-

tions between the underlying features. However, none of them utilizes the conversational

context of tweets to analyze the stances of people towards a rumor and determine its ve-

racity.
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Chapter 3

Improving Usability of Ratings: Quantifying

Aspect Bias

3.1 Introduction

In this chapter, we focus on user feedback in forms of ratings for different aspects of

items. With explosive growth and easy availability of information on the web, we base

our purchasing decisions increasingly on the opinion of others while knowing next to

nothing about them. Before visiting a restaurant, if we ask multiple friends of ours for

their opinion, we might end up with mixed reactions. Since we know them individually,

we know their tastes and expectations, so we know whose raves or rants are to be taken

with a pinch of salt. However, presented with an overwhelming number of opinions from

strangers for an item, it is difficult to know whom to trust and how much. Each individual

user is different and rate the same item differently depending on his/her expectations from

the item. While we try to judge the quality of an item based on its ratings given by

different people, we are unaware of these underlying biases of people that influence those

ratings.

An item typically has many aspects and not all aspects are equally important to every

user. To some user, the cleanliness of a hotel is most important and he/she tends to rate

this aspect stringently, but is lenient when rating food or amenities. Other users may have

a different set of preferences and their aspect ratings for the same item could be vastly
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different. Hence individual biases determine the ratings we observe, making it difficult to

interpret conflicting ratings without knowing the underlying user biases. Therefore, the

confounding factor that we wish to uncover in this chapter is the aspect biases of users,

that influence their ratings and obfuscate the true quality of an item.

An item’s quality is often estimated by considering a simple average of all user ratings.

However, such an average is an inadequate estimation of the true quality of an item, given

the varied biases of users. For an item with only a few ratings this is aggravated, since

even its average ratings are highly susceptible to those few users’ biases. In order to

reliably estimate the quality of an item and to make an informed purchase decision, it is

important for a person to be aware of the latent aspect biases of users that affect their

ratings. To properly interpret an individual’s rating and the quality of an item, one needs

to look at (i) how the individual rated other items on the same aspect to gauge his/her

aspect bias, as well as, (2) how other users rated that particular item’s aspect, to estimate

its true quality. This requires modeling of both the user and the item simultaneously in a

unified framework.

There have been many works on rating prediction in the past decade [54, 49, 35, 68,

87, 106, 105, 85]. Most of them are based on collaborative filtering approaches where

deviation terms are used to account for rating bias of a user and item. For the task of

aspect rating prediction even though one can train multiple models for each aspect, they

are unable to capture the correlation between aspects. For example, a person who is fussy

about cleanliness of a hotel, is more likely to be choosy about room than the location

of a hotel. Recently, researchers have studied the prediction of latent aspect ratings using

review texts associated with the ratings [125, 123]. However, such descriptive texts are not

always available, and even if they are, they do not comment on each aspect individually

making the aspect rating prediction task hard.

We propose a unified probabilistic model to quantify the underlying user biases for

different aspects that lead to the observed aspect ratings for different items. We directly

model the correlation between aspects by allowing a covariance structure among them.

This models a realistic scenario where a user’s bias, and in turn her rating of one aspect,
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Figure 3.1: Sample restaurant’s ratings with color coded user aspect bias shown beside
the ratings.

may be correlated with another aspect. We show that it is possible to detect the under-

lying aspect biases of individual users that are consistent across their ratings on different

items. Typically such a model will require a lot of ratings from an individual user to learn

his/her bias properly. This requirement can be limiting in an e-commerce set-up where the

sparsity of datasets are generally very high. In our model, we mitigate this by exploiting

the similarity between rating characteristics of different users. We can learn the aspect

bias of users even with few ratings, by introducing latent user groups, based on the rating

behavior of users on various aspects. For example, in the domain of hotels, one of the

groups might generally give low ratings for cleanliness while another user group gives

higher ratings for food.

Figure 3.1 shows an example application of the model where the learned user aspect

bias is displayed beside the ratings. People with a negative bias tend to be more critical

about the aspect and generally underrate the aspect than other users, whereas people with

a positive bias for an aspect tend to overrate it. Knowing the aspect biases of individuals,

other users can better interpret their ratings. For a person looking at the ratings of a

hotel in order to decide whether to make a reservation, it might be helpful to know the
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aspect preferences of users and she can decide to rely more on the ratings of users whose

preferences resonate with her own. Furthermore, this is beneficial for service providers to

focus on improving the aspects of an item that consumers truly care about.

Another technical limitation of previous works on modeling user ratings is a funda-

mentally wrong assumption that observed ratings are continuous [54, 49, 35, 68, 87, 106,

105, 85]. Whereas, in reality most observed ratings in e-commerce websites are ordinal

in nature. There have been very few attempts to address the ordinal nature of ratings. A

model using regression is developed in [113] to handle ordinal ratings as a special case.

The work in [50] proposes a wrapper around a CF method for ordinal data. Both of these

works use a logit model for ordinal regression. In contrast, most statistical approaches

handle ordinals using ordinal probit model [1, 104, 77]. Although these approaches al-

low Bayesian inference, it necessitates using truncated Gaussian distributions and forced

ordering of cut-off points. This leads to complicated and even sub-optimal inference.

Our model incorporates the ordinal nature of observed ratings through proper statis-

tical formulation. This provides a better fit with the real world ratings data. However,

modeling the ordinal nature of observed ratings as well the correlation between aspects

introduce non-conjugacy into our model, making Bayesian inference very challenging.

To eliminate the non-conjugacy of Gaussian prior-Categorical likelihood, we utilize

stick-breaking formulation with Pólya-Gamma auxiliary variable augmentation. The con-

struction proposed in the paper is efficient and generic. It will help developing inference

mechanisms for various applications that need to model ordinal data in terms of continu-

ous latent variables with a correlation structure.

Experiments on two real world datasets from TripAdvisor 1 and OpenTable 2 demon-

strate that the proposed model provides new insights in users’ rating patterns, and outper-

forms state-of-the-art methods for aspect rating prediction.

To the best of our knowledge, this is the first work to model ordinal aspect ratings

parameterized by latent multivariate continuous responses, with a simple, scalable and

fully Bayesian inference.

1
https://www.tripadvisor.com

2
https://www.opentable.com
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3.2 Ordinal Aspect Bias Model

In this section, we describe the design of our Ordinal Aspect Bias model and present a

Bayesian approach for inference.

Suppose we have J users and I items. A user can give ratings on A aspects of the

item. Let R be the set of observed ratings where rij is an A dimensional vector denoting

the rating of user j for item i on each of its aspects. Each rij is a discrete value between

1 and K corresponding to a K-level scale (poor to excellent). We assume that rij arises

from a latent multivariate continuous response vij which is dependent on two factors : (i)

the intrinsic quality of the item on the aspect and (ii) the bias of the user for the aspect.

The intrinsic quality of an item zi is an A dimensional vector, drawn from a multi-

variate normal distribution, with mean µ and covariance matrix ⌃. We use multivariate

normal distribution to account for the correlation among the subsets of aspects of an item.

For example, it is highly unlikely for a hotel to have excellent room quality but very poor

cleanliness, but it is possible to have a good location and average food choices. Such cor-

relations among subset of aspects are captured by the covariance matrix. The parameters

(µ,⌃) are given a conjugate normal-inverse Wishart (NIW) prior.

The preference of a user for an aspect is captured by a bias vector mg of dimension

A. If a user places great importance on a particular aspect (e.g. cleanliness), this will

be reflected in his ratings across all hotels. In other words, her rating on the cleanliness

aspect will tend to be lower than the majority’s rating for cleanliness on the same hotel.

We cluster users with similar preferences into different user groups and associate a bias

vector mg with each group. The membership of a user j in a user group is denoted as sj

where sj is drawn from a categorical distribution ✓ with a Dirichlet prior parameter ↵.

Given the intrinsic quality zi and bias mg, the latent response vij is drawn from a

multivariate Gaussian distribution with zi + msj as mean and a hyper-parameter B as

covariance. The formulation of the mean is intuitive - a user’s response depends on the

item’s intrinsic quality for an aspect offset by his/her own bias. Here we have used an

additive bias, experimenting with other forms would be a possible direction for future
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exploration.

Given the latent response vij, we need to sample the observed rating vector rij. Note

that since the observed ratings are ordered and discrete, they should be drawn from a cat-

egorical distribution. However, the latent response vij is given a multivariate Gaussian

prior. In order to have a fully Bayesian inference, we need to transform this categorical

distribution to a Gaussian form to exploit conjugacy. This is the central technical chal-

lenge for our proposed model.

The two most popular choices for such parameterizations are - ordered logit and or-

dered probit models. While both have received wide coverage, inferences for them remain

inefficient [43]. We propose an alternative here. We develop a stick-breaking mechanism

with logit function to map the categorical likelihood to a binomial form. Thereafter, lever-

aging the recently developed Pólya-Gamma auxiliary variable augmentation scheme [93],

the binomial likelihood is transformed to Gaussian, thus establishing conjugacy and en-

abling an effective posterior inference.

These two concepts have been sparsely explored in the literature before, but, indepen-

dently. The authors of [121] used stick-breaking formulation to parameterize the underly-

ing continuous rating. However, since the non-conjugacy challenge remained, it made an

MCMC sampling non-trivial and they performed an approximate variational Bayesian in-

ference. For correlated topic models [10], Pólya-Gamma auxiliary variable augmentation

is used with logistic-normal transformation. None of these works use stick-breaking like-

lihood with Pólya-Gamma variable augmentation to exploit conjugacy to facilitate Gibbs

sampling.

The technical aspects of of our model construction are described in detail in the fol-

lowing sections. The generative process of the model is as follows:

1. Draw a multinomial group distribution ✓ from Dirichlet (↵).

2. For each group g 2 1, · · · , G draw a bias offset mg from NA(0,⇤)

3. For each user j 2 1, · · · , J , sample a group sj from Cat (✓)

4. For each item i 2 1, · · · , I , sample an intrinsic rating zi from NA(µ,⌃)

5. For each rating rij 2 R
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Figure 3.2: Ordinal Aspect Bias Model

(a) draw latent continuous rating vij from NA(zi +msj ,B)

(b) draw observed ordinal rating rij from Cat (SB(vij, c))

where SB(vij, c) refers to the stick-breaking parametrization of the continuous response

vij using cut-points c. Figure 3.2 shows the proposed graphical model using plate nota-

tion.

3.2.1 Stick-Breaking Likelihood

We first discuss how to map the categorical likelihood of vij, denoted as Lik(vij), to a

binomial form. Let rija denote the observed ordinal rating of item i, by user j on aspect

a, and is drawn from a categorical distribution over K categories. Since the categories

are ordered, we utilize a stick-breaking parameterization for the probabilities P (rija =

k) where k 2 {1, · · · , K}.

Suppose we have a unit length stick where the continuum of points on this stick rep-

resents the probability of an event occurring. If we break this stick at some random point

p, then we have a probability mass function over two outcomes (with probabilities p and

1 � p). By breaking the stick multiple times, we obtain a probability mass function over

multiple categories. Figure 3.3 shows an illustration of this. If we consider four ordered

categories, the Stick-Breaking Likelihood can be written as:
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Figure 3.3: Illustration of Stick Breaking Process with a unit length stick.

P (r = 1|⌘) = f(⌘1) (3.1)

P (r = 2|⌘) = (1� f(⌘1))f(⌘2) (3.2)

P (r = 3|⌘) = (1� f(⌘1))(1� f(⌘2))f(⌘3) (3.3)

P (r = 4|⌘) = (1� f(⌘1))(1� f(⌘2))(1� f(⌘3)) (3.4)

where P (r = k) represents the probability of an observed rating being k and ⌘ is a

function of the data, and f() is a function to map ⌘k’s value between [0, 1]. Following the

stick breaking principle, we parameterize the probability of each ordinal rating rija being

assigned the categorical value k i.e. P (rija = k), using a function of the covariate ⌘kija.

We define ⌘kija as:

⌘kija = ck � vija (3.5)

where c = {c1, · · · , cK�1} is a cut-point vector with c1 < c2 < · · · < cK�1. These

represent the boundaries between the ordered categories. Thus ⌘kija represents a discrim-

inative mapping of the underlying continuous rating vija onto the k dimensional ordinal

space, using cut-point vector c.

Next, the probability of observing the vector of ratings rij is defined as a product of

probabilities of observing each of the aspect ratings rija given the values of ⌘ija, i.e.

P (rij|⌘ija) =
AY

a=1

P (rija|⌘ija) (3.6)

Hence the likelihood of vij is:
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Lik(vij) = P (rij|vij, c) = P (rij|⌘ij) =
AY

a=1

P (rija|⌘ija) (3.7)

To squash ⌘ija within [0,1] we use a sigmoid function on it, denoted by f(x) = ex

1+ex .

Sigmoid function enables us to use Pólya-Gamma augmentation scheme to handle the

non-conjugacy subsequently.

For identifiability, we set f(⌘Kija) = 1. Generalizing from equation 3.1 to 3.4, the

stick-breaking likelihood can be written as:

P (rija = k) =
Y

k0<k

(1� f(⌘k
0

ija))f(⌘
k
ija) (3.8)

By encoding the discrete rating rija, with a 1-of-K vector xija where

xk
ija =

8
>><

>>:

1 if rija = k

0 otherwise
(3.9)

we now rewrite the likelihood of vij (equation 3.7) in binomial terms:

Lik(vij) =
AY

a=1

P (rija|⌘ija) =
AY

a=1

P (xija|⌘ija) =
K�1Y

k=1

Binom(xk
ija|Nk

ija, f(⌘
k
ija))

(3.10)

where

Nk
ija = 1�

X

k0<k

xk0

ija

3.2.2 Pólya-Gamma Variable Augmentation

Next, we explain how to transform the above binomial likelihood to a Gaussian form via

Pólya-Gamma (PG) auxiliary variable augmentation scheme. The integral identity at the

heart of the PG augmentation is:

(e )a

(1 + e )b
= 2�be 

Z 1

0

e�! 
2/2p(!)d! (3.11)
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where  = a� b/2, b > 0 and ! ⇠ PG(b, 0).

By expanding the binomial likelihood in Eqn. 3.10, we get

P (xija|⌘ija) =
K�1Y

k=1

✓
Nk

ija

xk
ija

◆
(f(⌘kija))

xk
ija(1� f(⌘kija))

Nk
ija�xk

ija (3.12)

By replacing f(⌘kija) with the sigmoid function, we get

P (xija|⌘ija) =
K�1Y

k=1

✓
Nk

ija

xk
ija

◆
(e⌘

k
ija)x

k
ija

(1 + e⌘
k
ija)N

k
ija

(3.13)

The above equation is in similar form as the left hand side of PG augmentation scheme

(equation 3.11). Hence using the integral identity of PG augmentation, we can now rewrite

the categorical likelihood of vij as:

Lik(vij) =
AY

a=1

P (xija|⌘ija) (3.14)

/
AY

a=1

K�1Y

k=1

e
k
ija⌘

k
ija

Z 1

0

e�!
k
ija(⌘

k
ija)

2/2p(!k
ija)d!

k
ija (3.15)

where kija = xk
ija � Nk

ija/2,  k
ija = ⌘kija and p(!k

ija) is PG(Nk
ija/2, 0) independent of

 k
ija.

By the exponential tilting property of PG distribution, we can draw the auxiliary vari-

able as

!k
ija ⇠ PG(Nk

ija, ⌘
k
ija) (3.16)

Conditioning on !ij , Lik(vij) can be transformed to a Gaussian form:
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Lik(vij) /
K�1Y

k=1

AY

a=1

e
k
ija⌘

k
ijae�!

k
ija(⌘

k
ija)

2/2 (3.17)

/
K�1Y

k=1

AY

a=1

exp{kija(ck � vija)� !k
ija(ck � vija)

2/2}

/
K�1Y

k=1

AY

a=1

exp{�!k
ija((ck � vija)�

kija
!k
ija

)2}

/
K�1Y

k=1

exp{�1

2
(
k

ij

!k
ij

� (ck � vij))
T⌦k

ij(
k

ij

!k
ij

� (ck � vij))

where k
ij ,!

k
ij are vectors of dimension A, ⌦k

ij is a diagonal matrix of (!k
ij1,!

k
ij2, · · · ,!k

ijA).

Here, we assume the values in the A-dimensional cut-point vector ck are all equal

to ck. In practice, if we need different cut-points for different aspects, ck can be set

accordingly.

3.2.3 Bayesian Inference

As we have transformed the likelihood to a Gaussian form, we now proceed to present a

Gibbs sampler for a fully Bayesian MCMC inference with exact sampling. We describe

the sampling of all our latent variables, user groups s, bias offset of user groups m, intrin-

sic ratings z, cut-points c and latent continuous ratings v. For faster mixing rates, we first

integrate out the group distribution by exploiting the Dirichlet-Multinomial conjugacy.

We factor the joint probability of these variables as:

P (r,v,m, z, s, c) = P (r|v, c)P (v|m, z, s)P (c)P (z)P (s)P (m)

Sampling Bias Offset of User Groups. For each user group g, we sample its bias offset

mg from the Gaussian posterior:

P (mg|⇤,v, z) / P (mg|⇤)
Y

j2J [g]

Y

i2I[j]

P (vij|mg, zi,B)

where J [g] is the set of users belonging to group g and I[j] is the subset of items rated
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by user j.

Since the prior is a multivariate Gaussian NA(0,⇤) and the observations vij are also

drawn from a multivariate Gaussian NA(zi + mg,B), the posterior of mg is given by a

Gaussian NA(m̂g, ⇤̂g) with

m̂g = ⇤̂g(B
�1

X

j2J [g]

X

i2I[j]

(vij � zi))

⇤̂g = (ngB
�1 +⇤)�1

where ng is the total number of ratings observed for users belonging to group g.

Sampling User Groups. We integrate out the group distribution ✓ by exploiting Dirichlet-

Multinomial conjugacy, and sample the group of each user j as:

P (sj|↵,m,v) / P (sj|↵)
Y

i2I[j]

P (vij|msj , zi,B)

where I[j] are the subset of items rated by user j, the prior P (sj|↵) is given by the

Dirichlet distribution. The likelihood is the multinomial distribution given by the proba-

bility of observing all the ratings of the user j given bias msj .

Sampling Intrinsic Ratings. Similar to the bias offsets of user groups, we sample intrin-

sic rating zi of each item i from a Gaussian distribution NA(µ̂i, ⌃̂i) where

µ̂i = ⌃̂i(B
�1

X

j2J [i]

(vij �msj) +⌃�1µ)

⌃̂i = (niB
�1 +⌃)�1

where ni is the total number of ratings observed for item i and J [i] is the subset of

users who have rated item i. The prior parameters µ,⌃ of the intrinsic ratings are given
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a conjugate Normal-Inverse Wishart (NIW) prior and sampled.

Sampling Latent Continuous Ratings. The latent continuous ratings, vij have a Gaus-

sian prior NA((zi +msj),B) and a categorical likelihood P (rija| vij, c). We have trans-

formed the categorical likelihood to the conditional Gaussian form (recall Eqn. 3.17). The

posterior can be formulated as:

P (vij) / P (vij|msj , zi,B) ⇤ Lik(vij|!, rij, c)

/ exp{�1

2
(vij � (zi +msj))

TB�1(vij � (zi +msj))}

⇤
K�1Y

k=1

exp{�1

2
(
k

ij

!k
ij

� (ck � vij))
T⌦k

ij(
k

ij

!k
ij

� (ck � vij))}

Since both the prior and likelihood are now Gaussian, we have the following Gibbs

sampler:

vij ⇠ NA(µij!,⌃ij!)

!ija ⇠ PG(Nija,vija � c)

where

µij! = B�1(zi +msj) +
K�1X

k=1

⌦k
ij(ck �

k
ij

!k
ij

)

⌃ij! = B�1 +
K�1X

k=1

⌦k
ij

Sampling Cut-Points. Sigmoid function in the stick-breaking formulation allows us to

sample cut-points while ensuring their relative order without additional constraints. Fig-

ure 3.4 shows probability distributions for simulated cut-points. For each category, the

xaxis denotes the latent continuous ratings and the yaxis denotes probability of belong-

ing to that category.
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Figure 3.4: Category probabilities for cut-points (-5,-1,2,7)

The following lemma gives the relationship between cut-points, latent continuous rat-

ings, and the observed ratings.

Lemma 3.2.1. If vija > ck � ln (1� e�(ck+1�ck)), then P (rija = k + 1) > P (rija = k).

Proof. Let �k � � ln (1 � e�(ck+1�ck)). By replacing vija with (ck + �k) in Eqn. 2, we

have

P (rija = k) =
Y

q<k

(1� f(cq � ck � �k))(f(ck � ck � �k))

=
Y

q<k

(1� f(cq � ck � �k))(f(��k))

P (rija = k + 1) =
Y

q<k

(1� f(cq � ck � �k))(1� f(��k))(f(ck+1 � ck � �k))

Taking the ratio, we have

P (rija = k + 1)

P (rija = k)
=

(1� f(��k))(f(ck+1 � ck � �k))

f(��k)

= (
e�k

1 + e�k
⇤ 1

1 + eck+�k�ck+1
)/(

1

1 + e�k
)

=
e�k

1 + eck�ck+1+�k

Since �k � �ln(1 � e�(ck+1�ck)), we see that e�k

1+eck�ck+1+�k
> 1. Hence, P (rija =
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k + 1) > P (rija = k).

We have shown that

P (rija = k + 1) > P (rija = k) when vija � (ck � ln(1� e�(ck+1�ck))

Similarly,

P (rija = k) > P (rija = k � 1) when vija � (ck�1 � ln(1� e�(ck�ck�1)))

This implies, when vija is within the range (ck�1 � ln(1 � e�(ck�ck�1)), ck � ln(1 �

e�(ck+1�ck))], then P (rija = k) has the maximum probability over all other categories.

In other words, for vija in the stated range, we have argmaxk0 P (rija|vija, k0) = k.

Hence, given the sampled values of vija we can constrain the possible set of values for

the cut-points. We sample cut-point ck from a uniform distribution within the range:

ck ⇠ U [max{vija| argmax
k0

P (rija|vija, k0) = k}� ln(1� e�(ck�ck�1)),

min{vija| argmax
k0

P (rija|vija, k0) = k + 1}� ln(1� e�(ck�ck�1))]

3.3 Experiments

For evaluation we use hotel ratings from TripAdvisor [125] and restaurant ratings from

Opentable.com 3. TripAdvisor lets its users rate a hotel in multiple aspects, namely, Ser-

vice, Value, Room, Location. In OpenTable a user can rate each restaurant on Ambience,

Food, Service and Value. From OpenTable.com we gathered all the restaurant ratings in

New York Tri-State area. Table 3.1 shows the details of the datasets. The ”#Items” ,

”#Users” and ”#Ratings” columns are the number of users, items and ratings respectively,

in each of the datasets.

3
www.opentable.com
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Dataset # Items # Users # Ratings Aspects
TripAdvisor 12,773 781,403 1,621,956 Service, Value, Room, Location
OpenTable 2805 1997 73,469 Ambience, Food, Service, Value

Table 3.1: Statistics of experimental datasets.

3.3.1 Rating Prediction

One application of Ordinal Aspect Bias model is predicting observed aspect ratings. We

perform five-fold cross validation on user-item pairs, and take expected value of an aspect

rating as the predicted rating. Note that all the aspect ratings for the same user-item pair

will be in the same training or test set. By default, the number of user groups are set to

10.

For comparison, we first implemented the following baselines:

• Continuous Aspect Bias model is the continuous variant of our model where ob-

served ratings are assumed to be continuous. Observed ratings are drawn from a

(conjugate) multivariate Gaussian distribution, with mean as the true rating of the

item offset with the bias of the user’s group.

• Ordinal and Continuous No Bias model assume users are not biased. The ob-

served ratings for an item are drawn from only the true rating of the item.

• Ordinal and Continuous Global Bias model assume all users have the same bias.

All ratings for an item are drawn from the true rating of the item offset with a global

bias.

For all the models, we infer the latent continuous rating in the test phase with Gibbs

sampling using the other parameters learned during training phase. Since all these meth-

ods are generative models we use test set log likelihood as a measure of generalization

power of the model. The higher the likelihood, the better is a model’s generalization

power on unseen data. We also use one of the most popular metric for rating prediction

evaluation, namely, Root Mean Square Error (RMSE). RMSE measures the standard de-

viation of the prediction errors and is very commonly used for evaluation of regression

analysis.
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Model TripAdvisor Data OpenTable Data
log LL RMSE log LL RMSE

Ordinal Aspect Bias -557.08 1.00 -493.79 1.03
Continuous Aspect Bias -1050.32 3.13 -560.14 2.21
Ordinal No Bias -689.76 1.47 -546.25 1.95
Continuous No Bias -1904.64 3.52 -651.16 2.39
Ordinal Global Bias -2438.52 2.85 -570.28 2.37
Continuous Global Bias -2632.95 3.91 -595.62 2.41

Table 3.2: Log likelihood and RMSE results on the test set. Log LL is higher the better,
RMSE is lower the better. All comparisons are statistically significant (paired t-test with
p < 0.0001).

Model TripAdvisor Data
Service Value Room Location

RMSE FCP RMSE FCP RMSE FCP RMSE FCP
PMF 2.006 0.501 1.933 0.526 1.836 0.592 2.127 0.603

BPMF 1.414 0.586 1.373 0.571 1.314 0.614 1.209 0.651
URP 1.179 0.489 1.156 0.515 1.194 0.513 1.001 0.492

SVD++ 1.064 0.578 1.079 0.562 1.093 0.639 0.894 0.665
BHFree 1.143 0.553 1.199 0.582 1.124 0.624 1.007 0.671
LARA 1.193 0.576 1.221 0.531 1.087 0.558 1.170 0.672

OrdRec + SVD++ 1.348 0.619 1.344 0.613 1.359 0.654 1.173 0.702
AspectBias 1.067 0.646* 1.063* 0.645* 1.045 0.678* 0.854* 0.717

Table 3.3: RMSE and FCP results for rating prediction on TripAdvisor dataset. RMSE
values are the lower the better, FCP is higher the better. ”*” denotes statistical significance
with the runner up for p < 0.005

Table 3.2 shows mean log LL and RMSE of the competitive methods on test data.

For both datasets Ordinal Aspect Bias model performs the best, demonstrating the need

to consider both user’s aspect bias and the proper ordinal nature of ratings. We note

that as expected, the Global Bias and No Bias models perform the worst. This clearly

demonstrates that users have distinct aspect preferences, rendering such a Global model

insufficient. We also note that the ordinal models always outperform their continuous

counterpart, thus proving the efficacy of modeling the proper nature of user ratings.

Next, we compare our proposed model with a number of state-of-the-art rating pre-

diction models, namely, PMF [105], BPMF [106], URP [68, 3], SVD++ [49] and BHFree

[87] and introduced in our background chapter (refer to Section 2.2). These are some

of the most popular and competitive Collaborative Filtering (CF) based rating prediction

algorithms. We used the implementation and best parameter settings published on Li-
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Model OpenTable Data
Ambience Food Service Value

RMSE FCP RMSE FCP RMSE FCP RMSE FCP
PMF 2.584 0.524 2.232 0.530 2.388 0.511 2.151 0.521

BPMF 1.154 0.490 0.992 0.532 1.426 0.498 1.302 0.519
URP 0.952 0.557 0.818 0.551 1.144 0.522 1.120 0.514

SVD++ 0.944* 0.525 0.831 0.544 1.088 0.544 1.131 0.517
BHFree 0.956 0.483 0.812 0.499 1.151 0.512 1.096 0.495
LARA 1.150 0.538 2.242 0.514 2.444 0.549 1.089 0.526

OrdRec + SVD++ 1.337 0.672 1.121 0.613 1.533 0.618 1.521 0.623
AspectBias 0.953 0.854* 0.787* 0.850* 1.134 0.842* 1.043* 0.864*

Table 3.4: RMSE and FCP results for rating prediction on OpenTable dataset. RMSE
values are the lower the better, FCP is higher the better. ”*” denotes statistical significance
with the runner up for p < 0.005

bRec.net website for these models. All these methods treat ratings as continuous values.

We also compare with OrdRec [50] which can wrap collaborating filtering methods to

tackle ordinal rating. These models do not consider the dependency between aspects and

cannot predict multiple aspect ratings for a user-item pair. We therefore train them sepa-

rately for each aspect. We further compare with LARA [125], which models latent aspect

ratings using review texts. LARA considers the correlation between aspects.

For evaluation we use Root Mean Squared Error (RMSE) which is a popular metric

of evaluation for rating prediction. Since RMSE cannot capture personalization or ordinal

rating values, we also use FCP to measure the fraction of correctly ranked pair of items

for each user. Table 3.3 and Table 3.4 shows the results for TripAdvisor and OpenTable

dataset respectively.

We see that the proposed model outperforms state-of-the art methods in most cases.

This is due to its ability of modeling aspect correlations and the ordinal nature of ratings

which the other CF based methods are unable to leverage. Compared to the other method

that models aspect correlations, LARA, we also note that AspectBias has significantly

smaller predictive errors for all aspects. LARA relies on review texts to predict aspect rat-

ings. Therefore, it requires a review text to mention all the aspects and authors sentiment

for them to predict aspect ratings accurately, which is not always the case. For exam-

ple, for hotel reviews people often describe their in-room experiences in detail, unlike the

service or location, which explains comparatively better performance of LARA for the
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Method TripAdvisor Data OpenTable Data
PMF 0.016 0.142

BPMF 0.219 0.133
URP 0.238 0.177

SVD++ 0.364 0.201
BHFree 0.359 0.205
LARA 0.289 0.152

OrdRec + SVD++ 0.148 0.262
OrdinalAspectBias 0.404 0.298

Table 3.5: Pearsons Correlation of aspect ranking

aspect room.

The relative ranking of aspects for a user-item pair is also important to understand

which aspects of an item the user liked better. Table 3.5 shows the Pearson correlation

coefficient of aspect ranking for a user-item pair, compared to its ground truth ranking.

Clearly, Ordinal Aspect Bias model outperforms all other methods for the task of relative

ranking of aspects. This validates that our model is able to learn aspect rating behavior of

users accurately in order to achieve this prediction accuracy.

3.3.2 Evaluation of User Groups

A significant advantage of our model is that it can infer latent user groups depending

on their rating behaviors across multiple items. In this set of experiments, we evaluate

whether the inferred latent user groups are meaningful. We show that if two users are

assigned to the same group, then their ratings on the same items for the same aspects are

indeed similar.

We perform a test similar to the work in [125]. We look at the standard deviation of

the set of users belonging to a group who have rated the same item [125]. For each aspect

of each item, we compare the standard deviation of ratings of each user group with that

of two control groups : (i) of all users who have rated the item, and (ii)a random set of

users who have rated the item. The size of the random set is kept the same as the size of

the user group.

Figure 3.5 shows the scatter plots of the standard deviations for both datasets. In

all figures we observe that most of the points lie above the line y = x, indicating that
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(a) User group vs. All users (b) User group vs. Random users

(i) TripAdvisor

(c) User group vs. All users (d) User group vs. Random users

(ii) OpenTable

Figure 3.5: Scatter plot of standard deviations of aspect ratings.
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users who belong to the same group have smaller standard deviation compared to the

control group. This implies that the latent user groups obtained by the proposed model

can effectively cluster users who give similar aspect ratings to the same item.

(a) TripAdvisor

(b) OpenTable

Figure 3.6: Mean bias value of user groups.

Figure 3.6 shows the mean ratings of 10 user groups after scaling the ratings to the

range [-10, 10]. The TripAdvisor dataset captures the ratings of users for hotels world-

wide. For the TripAdvisor dataset, we observe that the first user group seems to be quite

critical whereas the last three user groups are positive. We also observe the correlation

of aspect biases for different groups. For example, group 5 and 7 seem to have similar

biases for Room and Value whereas group 4 is demanding about Value and Location. Con-

sidering all the ratings of the users belonging to group 5 and 7, we see that their ratings

for Value are indeed most correlated with their ratings for Room than other aspects. On

the other hand, for group 4 their ratings for Value are highly correlated with their ratings

for Location. This suggests that for good Value for money, some users prefer good Loca-

tion while some prioritize better Room quality and by modeling the covariance structure

among aspects we are able to uncover such dependencies. Most of the user groups give

positive ratings for the aspect Location. This can probably be attributed to the fact that

39



CHAPTER 3. QUANTIFYING ASPECT BIAS OF RATINGS

(a) OpenTable (b) TripAdvisor

Figure 3.7: Correlation with �obs

they have done their research on the location of a hotel and have a fairly good idea about

it before booking online. Thus, they are more likely to be satisfied with the location.

OpenTable contains ratings of restaurants in the New York TriState area. We can

see from Figure 3.6b that users in group 4 who are particular about Ambience are also

demanding about Service and Value.

3.3.3 Intrinsic Quality of Items

Often one forms a judgment about the quality of an item by the average rating it has

received. However, if an item has received only a few ratings or is still in its early stages,

it is difficult to form an accurate opinion concerning its quality. In this set of experiments,

we show that the intrinsic quality, learned by the proposed model, is correlated with users’

perception of the item’s true quality, even for items with few ratings.

We focus on items with less than 30 ratings and whose intrinsic quality and average

rating for an aspect differ by at least 0.5. Since an item’s true quality is unknown, we

estimate it by the relative difference in the observed ratings of the same user on a pair

of items. This is because if the qualities of two items are similar, a user will rate them

similarly. In other words, the difference in the observed ratings by the same user on two

similar quality items should be small.

For each pair of items rated by the same user on the same aspect, let their difference
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in observed ratings be �obs, difference between their average ratings be �avg and dif-

ference between the learned intrinsic ratings be �int. Figure 3.7 shows the correlation

between �obs and �int, as well as the correlation between �obs and �avg aggregated

over all aspects. We observe that for both datasets, as �int increases, �obs also increases.

However, �avg remains almost constant. This indicates that �obs is closely correlated

with �int, whereas �avg appears to be independent of �obs. This confirms that the

learned intrinsic rating is better able to reflect users’ perception of the true quality of an

item compared to using average ratings of the items.

With the ability of uncovering intrinsic ratings Aspect Bias model can help a user

compare true quality of two items without being misguided by their average ratings. We

believe this will be immensely beneficial for users as well as service providers to estimate

the true quality of an item even before it has seen a lot of ratings.

3.3.4 Case Study

Finally, we present the reviews of two randomly sampled users from OpenTable to demon-

strate that the aspect bias learned by our model correlates with their review texts (see Fig-

ure 3.8). The first user is from group G2 in Figure 3.6 that is particularly critical about

Value. From the reviews of this user (Figure 3.8a), as well as the reviews of randomly

selected users from other groups for the same item, we see that the user from group 2 is

indeed critical. We further confirm this observation by manually going through 100 ran-

domly sampled reviews and tabulate the sentiment distribution of each item. We observe

that this user is consistently critical even though the majority opinion is positive. The

second user belongs to group G6 in Figure 3.6, whose group bias is more or less neutral

on the aspect Ambience. Figure 3.8b shows that her opinion closely mirrors that of the

sentiment distribution of the majority of opinions. She is positive on item 2 and mentions

issues related to noise on items 1 and 3, which is reflective of the consensus of opinions

of those items.

These two cases further strengthen the fact that the group bias captured by our model

is accurate and can help us better interpret a users’ rating.

41



CHAPTER 3. QUANTIFYING ASPECT BIAS OF RATINGS

(a) Critical user on Value

(b) Neutral user on Ambience

Figure 3.8: Reviews of user belonging to “critical” and “neutral” group contrasted with
other reviews on the same items from OpenTable dataset
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3.4 Summary

We have presented a novel approach to understand users’ aspect bias, while capturing as-

pect dependencies as well as the proper ordinal nature of user responses. Our construction

of the stick-breaking likelihood coupled with Pólya-Gamma auxiliary variable augmen-

tation has resulted in an elegant Bayesian inference of the model. Empirical evaluation

on two real world datasets demonstrates that through proper statistical modeling of data

we are able to capture users’ rating behavior and outperform state-of-the-art approaches.

Furthermore, our model is effective in user modeling, analyzing users’ aspect preferences

and provides a better product quality estimation even when the product has received few

ratings.
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Chapter 4

Improving Usability of Reviews: Finding

Supporting Opinions

4.1 Introduction

We now focus on improving the usability of individual opinions expressed in user reviews

as general information sources. In the previous chapter (Section 3), we studied the effect

of varying aspect preferences of users on their observed ratings. Such aspect biases de-

termine the way a person perceives an item and also influence the sentiments expressed

in her reviews. Therefore, we wish to capture the aspect biases of authors in order to

interpret their reviews better. In addition to the overall sentiment expressed in reviews,

in order to make an informed decision a user often reads through many reviews looking

for some specific feedback on the item. For example, if a person needs to book a hotel

and plans to do an early check-in and comes across a review that mentions a hassle-free

early check-in (as shown in Figure 4.1), it will be helpful to know whether other guests

also had similar experiences. If a review complains about bed bugs or noise from con-

struction nearby, then it is important to know if that was an occasional problem based on

a single users experience or happens frequently. Opinions expressed in a review could be

colored by a person’s bias or be a stand-alone or rare experience. One tends to look for

a consensus around an opinion to verify if it is fairly common, before trusting a stranger
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Figure 4.1: A sample hotel review

completely. According to a recent survey published by TripAdvisor 1, 80% of users have

to read through at least 6-12 reviews before making a decision and over 64% people would

tend to ignore extreme and rare comments in reviews. However, given the large volume

of reviews generally present for such items, manually searching for consensus around an

opinion can be an extremely time-consuming and daunting task. Current service providers

such as TripAdvisor or Hotels.com offer little or no support for finding reviews that ex-

press similar opinions.

In this work, we study the problem of finding supporting sentences from reviews that

corroborate the opinions expressed in a target review sentence. This can be of great prac-

tical importance to the users by enabling them to easily look for appropriate comments on

the specific issues they are interested in. This will also be beneficial for service providers

to address and improve their service on the issues commonly mentioned by the users. To

this end, we propose a framework called SUpporting Reviews Framework (SURF), that

first identifies opinions expressed in a review, and then finds similar opinions for it from

other reviews.

A review is a collection of sentences where each sentence may have multiple seman-

tic segments, separated by punctuation and/or conjunctions. Each segment expresses an

opinion that can be represented as a combination of aspect, topic and sentiment. An aspect

refers to the overall theme of a segment, a topic is the specific subject or issue discussed

in the segment and the sentiment for each topic can be neutral, positive or negative. Table

4.1 shows the segments and the possible latent aspect, topics and sentiment for a sentence

of the hotel review in Figure 4.1. In contrast to our work in previous chapter (Chapter

1https://www.tripadvisor.com/TripAdvisorInsights/n2665/5-tips-inspired-our-new-traveler-survey
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3), we do not have explicit labels for aspects in the reviews and now wish to find these

aspects automatically through our model.

Review Sentence Segments Aspect Topic Sentiment
We had a big room

with clean bathroom
and a comfy bed,

but no wifi

We had a big room
with clean bathroom room room positive

bathroom positive
a comfy bed room bed positive
no wifi amenities wifi negative

Table 4.1: Opinion structure for a review sentence

Given an opinion (in a target segment), we say that a review supports the opinion, if

it contains some segment whose aspect, topic and sentiment are similar to those in the

target segment. Finding such supporting reviews is a challenge since reviews are typically

short unstructured text and discuss a wide range of topics on various aspects with differing

sentiments and vocabulary used. Furthermore, sentiments may not be expressed explicitly

using common words such as ‘good’ or ‘bad’, but can often be subtle and contextual.

Topic modeling approaches (as discussed in Section 2.1) have been widely used to re-

duce the effect of huge vocabulary by grouping words in topics. However, one fundamen-

tal assumption of topic models is the independence of topics even in the same document

i.e. the topics of all words in the same document are assumed to be independent. This

fails to capture the natural coherence present in user generated text such as reviews, which

rarely consist of isolated, unrelated sentences, but are composed of collocated, structured

and coherent groups of sentences [36]. We observe that an author’s train of thoughts when

writing a review is often linear, i.e., they will finish discussing one aspect before moving

on to the next. In Figure 1, we see that the user first commented on the Service aspect

(“front-desk staff was very accommodating”), then the Location aspect, followed by the

comment on Food, and finally moved on to Room. This shows that the aspects discussed

in a review are not chosen from a simple independent mixture, but rather, words in close

proximity tend to discuss the same aspect. Furthermore, within a review the aspects dis-

cussed in the current segment will affect the possible aspects for the successive segments.

We explicitly model such review thought patterns by constraining aspect transition

between segments. Previously, HTMM [30] and HTSM [98] have modeled topic coher-
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ence and semantic shifts by considering topic transition between sentences. However they

do not capture the non-repetitive discourse observed in reviews. Another line of work in

the literature captures the sequential nature of ideas among segments, especially seen in

movies or books using a progressive topical dependency model [20, 21]. However, un-

like books, the sequence of topics in reviews is not significant, but, once a topic has been

discussed in a review, it is unlikely to be mentioned again in a later segment. From this

perspective, our modeling objective is similar to labeled LDA [99], where topic distribu-

tion of a document is constrained. However, unlike labeled LDA, the possible aspects

of a segment are need to be dynamically constrained depending on aspects discussed in

previous segments.

We dynamically constrain aspect transition between segments using a review specific

Markov chain. Each segment in a review is assumed to discuss a single aspect. The possi-

ble aspects for a segment are limited and made dependent on the aspects already discussed

in the previous segments of the review. By tracking aspects of previous segments we are

able to ensure constrained aspect sampling for accurate modeling of a review structure.

This non-iterative nature of discourse has not been considered by any existing work.

For modeling an opinion properly, capturing the sentiment expressed for an aspect

is also of utmost important. The standard topic model LDA [7] assumes words come

from only the topic dimension and do not capture sentiment. There has been multiple

extensions of LDA to model sentiment. JST [59] introduces a latent sentiment varibale

in the model but assumes documents to have only a single sentiment. In ASUM [39]

the authors assume that all words in a sentence are associated with the same topic and

sentiment, which is often not true in the case of reviews. In our model, we wish to handle

the more realistic scenario where sentiments may vary depending on the topics discussed

in a review, e.g., an author might like the location of a hotel but not the service of the

staff. Some recent works [44, 39, 73, 124, 118, 119] have developed models to capture

both aspect and sentiment. However, they do not consider the preferences of authors, or

the inherent quality of the entity for the aspect. In a hotel review, the sentiment expressed

for service depends on both the service standard of the hotel (evident from the sentiment
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distribution of service of all reviews for the hotel) and the expectation of the author for

service (evident from the sentiment distribution of the author on service across all hotels).

A hotel’s location can be “just a few minutes walk from major attractions” for someone,

but if a user places high importance on the aspect distance, the same hotel could be “too

far away” for her, and her negative sentiment will be reflected in her reviews across hotels.

We take this into account by making the sentiment distribution of a review dependent on

both the entity and the author.

We propose an Author-aware Aspect Topic Sentiment model (Author-ATS) to cap-

ture the diverse opinions expressed in reviews, taking into account user preferences and

thought patterns. The model considers a word to be generated from a hierarchy of as-

pect, topic and sentiment and encodes the coherent structural property of a review by

dynamically constraining aspect distributions. We also develop a non-parametric version

of Author-ATS based on Dirichlet Process called Author-ATS (DP). In Author-ATS (DP)

we do not have to pre-specify the number of topics and the model can figure that out on

its own..

We develop a framework called SUpporting Review Framework (SURF) that utilizes

the Author-ATS model to compute the similarity of an opinion in a target segment to those

in the review corpus, and returns the top-k supporting reviews. Our similarity measure

takes into account both the lexical and semantic meaning of a segment in evaluating its

support to the opinion in a target segment. Since a target sentence may contain opinions

on multiple aspects, SURF will return a diverse set of answers with supporting sentences

for each aspect in the target sentence.

Extensive experiments on real world review datasets from TripAdvisor and Yelp show

the effectiveness of Author-ATS in modeling opinions compared to existing topic models.

Furthermore, SURF outperforms keyword-based approaches and word embedding based

similarity measures in finding supporting opinions. To the best of our knowledge, this

is the first work to find supporting reviews for an opinion expressed in user generated

contents.

Overall, the key contributions of this work are as follows:
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• To the best of our knowledge, this is the first work to introduce the problem of find-

ing supporting sentences for a given opinion expressed in user generated contents

to facilitate the validation of an opinion through consensus among authors.

• We propose novel parametric and non-parametric versions of Author aware Aspect

Topic Sentiment model (Author-ATS)that considers a word to be generated from a

hierarchy of aspect, topic and sentiment. The models encode the coherent structural

property of a review by dynamically constraining aspect distributions. They also

account for the role of both author and entity in a review, by deriving the sentiment

from an author-entity specific joint distribution.

• We present a similarity measure that considers both lexical and semantic similar-

ity, using the aspect-topic-sentiment inferred by Author-ATS for ranking opinion

sentences according to their support to a given sentence.

• Extensive evaluations on real world review datasets (TripAdvisor and Yelp) show

the effectiveness of Author-ATS in modeling opinions compared to existing topic

models. Furthermore, for the task of finding supporting opinions SURF outperforms

state-of-the-art keyword-based and word embedding approaches.

4.2 Overview of SURF

We start with an overview of our proposed framework for retrieving reviews containing

supporting opinions as depicted in Figure 4.2. It consists of two main components. The

first component takes as input a set of online reviews and parses the reviews into segments.

These segments are then used to train an Author-ATS model. With the trained model, we

represent each sentence in the review corpus as a mixture of aspects, topics and sentiments

and store them in a database.

The second component takes as input a target sentence in a review and computes the

similarity between the target sentence and sentences from other reviews. We define a new

similarity measure, Lexical Semantic Similarity (LSS). It considers lexical similarity of
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Figure 4.2: Overview of SURF

the two sentences, as well as their semantic similarity computed using the distributions

learned by Author-ATS model. For sentences with multiple aspects, we proportion the

top k returned supporting reviews according to the importance of each aspect in the target

sentence to ensure diversity of the results.

We describe these two components in detail in the following two sections.

4.3 Author-ATS Model

In this section we present the proposed Author-ATS model to learn the aspect, topic and

sentiment distributions of a review, taking into account (1) the natural writing style of a

person and (2) aspect biases of the author. The standard LDA [7] models a document as

a mixture of topics and a topic as a distribution over words. But this fails to represent a

more complex structure of opinions, where topics are often implicit and sentiments are

subtle. Author-ATS models an opinion as hierarchical dependent mixtures, where words

are generated from a three-level hierarchical structure of aspects, topics and sentiments.

We assume there are A distinct aspects for a domain, for each aspect there are Z topics and

for each aspect-topic pair S possible sentiments. We treat a segment as the basic semantic
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unit, discussing a particular aspect. A review sentence has one or more segments, and

each segment is a collection of words. Each word is associated with an aspect, topic and

sentiment. In other words, a review r is a collection of Dr segments where each segment

is a document d, consisting of Nd words.

In the following subsections we describe the assumptions and detailed construction of

the proposed model.

4.3.1 Constrained Aspect Generation

We explicitly model the behavior that after an author has finished discussing an aspect

and has moved on to the next, he or she is unlikely to return to it again. We assume

that each document d discusses a single aspect ad. The aspect distribution �r is drawn

from a Dirichlet with parameter ↵. In order to model the linear writing style of authors,

we constrain the possible aspects that can be sampled from �r. Whenever an author

starts writing a segment, he or she can choose to either (a) talk about an aspect not yet

discussed, or (b) continue with the aspect of the previous segment. This is captured by

imposing the constraint that the aspect of the jth document is dependent on the aspects of

the (j � 1)th, (j � 2)th, · · · , 1st documents of the same review.

With this we relax the independent mixture assumption of the standard LDA model

for aspects and form a review-specific Markov chain (see Figure 4.3). Such a higher

order Markov chain would normally incur intractable computational complexity due to

the exponential size of transition probability matrix. However, in our case, the transition

probability can be determined by overall aspect distribution of the review, �r and a list of

possible aspects for the segment. Since we assume a non-repetitive nature of discourse,

the number of possible aspects for a segment is monotonically decreasing for successive

segments. This special property enables us to devise a dynamic programming strategy to

solve the problem with linear complexity.

Each document is associated with a binary aspect vector ⇤. We restrict the sampled

aspect of a document to be drawn from only the aspects that are turned on, in ⇤ of that

document. For a document d, ⇤d =< l1, · · · , lA > where each la 2 {0, 1} and A is the
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Figure 4.3: Constrained aspect generation in Author-ATS. Aspects in review form a
Markov chain.

total number of aspects. Traditionally, for a document d, an aspect ad is sampled from a

multinomial distribution �r. Here, we restrict the possible sampled aspects to the list ⇤d.

A value of 1 for the entry la indicates that the aspect a can be sampled, while 0 indicates

that the aspect should not be sampled.

We generate ⇤d by tossing a Bernoulli coin for each aspect a with prior probability �a

for value 0. We set �a as the sampling probability for aspects which have been sampled

for a previous document. This ensures that an aspect which has been discussed before has

lesser probability of coming up again. We set �a = 0 for aspects not sampled in the past,

and for the aspect of (immediately) preceding segment. This models aspect coherency in

a review document where an author either chooses to discuss a new aspect or continues to

talk about the current one.

We define the list of possible aspects for the document d to be �d = {a | ⇤d[a] = 1}.

We sample an aspect ad from �r with the constraint that ad 2 �d i.e. an aspect can

be sampled for a document only if it is turned on in the binary aspect vector for the

document and thereby exists in the list of possible aspects for the document. Thus, the

aspect transition probability among documents becomes dependent on �r and the vector

�d. Unlike regular topic models, Author-ATS is no longer invariant to reshuffling of words

and is able to model linear aspect coherency in a review.
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4.3.2 Author-Entity dependent Sentiment Distribution

We account for the dual role of entity and author in a review, by observing that the sen-

timents expressed are influenced by both the quality of the entity being reviewed and the

preferences or biases of the author. We use two Dirichlet distributions to derive sentiment,

namely, entity-dependent distribution (⇠) and author-dependent distribution (�). For each

aspect-topic combination, ⇠ is drawn from a Dirichlet distribution with prior �1 and � is

drawn from a Dirichlet distribution with prior �0.

Since online reviews describe experiences of people, some words tend to appear fre-

quently regardless of the aspect being talked about (e.g.: ‘hotel’,‘trip’ or ‘mobile’, ‘phone’

for hotel and mobile reviews respectively). We call them domain stopwords as they are

not specific to any aspect. It is not possible to collect these words with off-the-shelf stop-

word dictionary since they are domain dependent. We use a binary switching variable yi

to determine the type for the ith word. If yi = 0, then the word is aspect neutral (domain

stopword); and if yi = 1, it is aspect dependent.

The generative process of the model is as follows:

• Draw a multinomial word distribution �0 for domain stopwords and �1 for each

aspect, topic and sentiment words from Dir (!).

• For each author u, draw a multinomial sentiment mixture � for each aspect and

topic from Dir(�0)

• For each entity e, draw a multinomial sentiment mixture ⇠ for each aspect and topic

from Dir (�1)

• For each review r:

1. Draw multinomial aspect mixture � from Dir(↵)

2. For each document d 2 r:

(a) Draw ⇤d from Bernoulli (�)

(b) Draw a type mixture  from Beta (�0, �1)
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(c) Sample an aspect ad from � s.t. ad 2 �d

(d) For sampled aspect ad, draw a topic mixture ✓ from Dir (�)

(e) For each word position i where 0  i  Nd

i. Sample a type yi from  

ii. Sample a topic zi from ✓

iii. Sample a sentiment si from � and ⇠

iv. Sample a word wi from

8
>><

>>:

�0 if yi = 0,

�1 if yi = 1

Note that for the first document of a review, we set �0 to the set of all possible aspects,

such that there is no constraint when sampling for the first segment of a review. Figure

4.4 shows the plate notation for Author-ATS model.

Figure 4.4: Graphical representation of Author-ATS

4.3.3 Bayesian Inference

The exact inference for the posterior distribution is intractable. We employ collapsed

Gibbs sampling for inference. Markov chain introduced for aspect coherency makes the

aspects non-exchangeable, hence sampling an aspect for a segment will also affect all sub-

sequent segments. Since the exact sampling for this would be computationally expensive,

we propose the following approximate posterior considering only the previous segments,

which has been shown to work well in similar cases previously [71].
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We sample an aspect (ad) for each document based on the posterior probability of

the type, topic and sentiment assignment of each word in the document and the aspects

sampled for preceding documents in the review.

P (ad| ~a�d, ~y�d, ~z�d,~s�d, ~w) / P (ad| ~a1:d�1)
ZY

z=1

SY

s=1

PW
w=1 B(nad,z,s

w + !)
PW

w=1 B(nad,z,s,�d
w + !)

(4.1)

P (ad| ~a1:d�1) /

8
>><

>>:

nr,�d
ad

+↵
P

a2�d
nr,�d
a +|�d|⇤↵

if ad 2 �d

0 otherwise
(4.2)

where B(~x) is the multidimensional extension of the Beta function. The notation nb,�c
a

refers to the number of times a has been assigned to b excluding current occurrence c,

e.g. nr,�d
ad

denotes the number of documents in review r that has been assigned aspect ad

excluding current document d.

The target aspect ad is dependent on the aspects sampled for the 1st to (d � 1)th

documents of the review, denoted by ~a1:d�1. We restrict the target aspect ad to belong to

the set defined by ⇤d of the document d to achieve coherence among aspects respecting the

nature of discourse observed in review writing styles. This constrained aspect sampling

differentiates Author-ATS from existing topic modeling works on review text by explicitly

modeling the topic coherence of opinionated text.

After sampling the aspect for the document, we jointly sample the latent type, topic

and sentiment for each word within the document. The posterior for the ith word of

document d (written by author u for entity e) is given as:
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P (yi, zi, si|ad, ~w, ~y�i,~z�i,~s�i) / P (yi|d) ⇤ P (zi|ad, d) ⇤ P (si|ad, zi, u, e, d) ⇤ P (wi|yi, ad, zi, si, )

/
nd,�i
yi + �yiP1

y=0(n
d,�i
y + �y)

⇤
nd,ad,�i
zi + �

PZ
z=1 n

d,ad,�i
z + Z�

⇤
⇣
q1

nu,ad,zi,�i
si + �0

PS
s=1 n

u,ad,zi,�i
s + S�0

+ q2
ne,ad,zi,�i
si + �1

PS
s=1 n

e,ad,zi,�i
s + S�1

⌘
⇤

n⇣,�i
wi

+ !
PW

w=1 n
⇣,�i
w +W!

yi = 0 ) ⇣ = yi

yi = 1 ) ⇣ = ad, zi, si

(4.3)

For sampling sentiment, instead of using a single Dirichlet density we use a Dirichlet

mixture as the prior [110, 111]. It is a weighted combination of two individual Dirichlet

densities � and ⇠. Mixture coefficients q1, q2 are set to 0.5, giving equal weights to both

author and entity. The probability for choosing a sentiment for a word depends on how

many times the sentiment was chosen by the author of the document for that aspect-topic

combination and how many times it was chosen for that particular entity. This ensures that

the chosen sentiment reflects both the entity’s quality for that topic as well as the author’s

preferences.

4.3.4 Non-parametric Author-ATS (DP) Model

While the number of aspects for a domain are limited, the number of topics for each

aspect may vary significantly and can be difficult to estimate. For restaurants, the topics

for ambiance are fewer (e.g. music, crowd etc.) compared to food. This motivates us to

propose a non-parametric version of the Author-ATS model where the number of topics

can be automatically discovered.

In this non-parametric version, topic inference is done through Chinese Restaurant

Process (CRP), a popular variant of Dirichlet Process (DP). In a Chinese restaurant with

infinite number of tables, each with infinite capacity, CRP determines if a customer
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chooses to sit at an occupied table (with a probability proportional to the number of cus-

tomers already sitting at the table), or an unoccupied one.

Following the idea of CRP, each observed aspect dependent word can either be as-

signed to an existing topic or to a new topic. The conditional distributions for the Gibbs

sampler are given by:

P (yi, zi, si|ad, ~w, ~y�i, ~z�i,~s�i, �, �
0, �1, �0, �1,!) /

8
>>>>>>>>>><

>>>>>>>>>>:

nd,�i
yi + �yiP1

y=0(n
d,�i
y + �y)

⇤
nd,ad,�i
ziPZ

z=1 n
d,ad,�i
z + �

⇤
⇣
q1

nu,ad,zi,�i
si + �0

PS
s=1 n

u,ad,zi,�i
s + S�0

+

q2
n
e,ad,zi,�i
si +�1

PS
s=1 n

e,ad,zi,�i
s +S�1

⌘
⇤ n⇣,�i
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⇣,�i
w +W!

; for an existing topic

nd,�i
yi + �yiP1

y=0(n
d,�i
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⇤ �
PZ
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d,ad,�i
z + �

⇤
⇣
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�0
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�1

S�1

⌘
⇤ !
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; for a new topic

yi = 0 ) ⇣ = yi

yi = 1 ) ⇣ = ad, zi, si

(4.4)

4.4 Retrieving Supporting Reviews

Given a target sentence in a review SURF computes its similarity with other review sen-

tences using the distributions learned by Author-ATS and returns a list of supporting re-

views. A sentence supports another sentence if they are either lexically similar (have

similar words) or semantically similar (implicitly expressing a similar viewpoint).

4.4.1 Lexical Similarity

Two sentences are lexically similar if they share keywords that are important for an as-

pect. While describing Service of a hotel, if two review sentences both use the same

word like ‘helpful’, they should have high lexical similarity. A popular method for com-

puting lexical similarity is the vector-space model. If we treat each review sentence as

a vector then lexical similarity between them (lexical sim) is computed as the cosine-
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similarity between these two vectors. The ith entry of a vector signifies the importance of

the corresponding word to its assigned aspect computed using the standard tf-idf weight-

ing scheme. In tf-idf, tf stands for term frequency and idf for inverse document frequency.

For our purpose, we define tf-idf of a word(w) with respect to an aspect(a) as:

tf(w, a) =
DX

d=1

P (w|d, a) (4.5)

P (w|d, a) =

8
>><

>>:

P (w) if w assigned to a in d

0 otherwise
(4.6)

idf(w,A) = log
A

1 + |a 2 A : 9d 2 D, P (w|d, a) > 0| (4.7)

P (w) is the generation probability obtained from Author-ATS model. As shown in equa-

tion 4.6, if a word w in document d is assigned to aspect a by the Author-ATS model,

then P (w|d, a) is its generation probability, or considered as 0 if it is assigned to some

other aspect. For tf we consider the summation of generation probability of a word from

the given aspect across all its occurrences and for idf we consider the number of different

aspects (in aspect set A) the word has been generated from.

Since words are important with respect to an aspect, unlike traditional tf-idf, these

values are computed across reviews on the whole corpus. Words frequently used for de-

scribing an aspect often tend to converge across reviews, even though written by different

users.

4.4.2 Semantic Similarity

Two sentences can be semantically similar if they share the same sentiment for an aspect

and topic even though they use different words. For example consider the two sentences,

“The hotel was quite close to space needle” and “Major attractions are just walking dis-

tance from the hotel”. Even though they are lexically dissimilar, they have high semantic

similarity as they both talk about the same aspect Location on the topic ‘attractions’ with
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a positive sentiment.

Let C be the set of words in a sentence. The sentiment for an aspect in a sentence is

taken to be the sentiment, majority of the corresponding aspect’s words in the sentence

belong to. Two sentences are considered to be similar under an aspect only if they share

the same sentiment. Aspect-topic probability of a sentence is defined as the ratio of gen-

eration probability of words generated from the aspect-topic pair a, z to the summation of

generation probabilities of all the words in the sentence.

P (C|a, z) =
P

w2C P (w|w has aspect a and topic z)P
w2C P (w)

(4.8)

We define sim0 to measure the similarities between two sentences (C1 and C2) hav-

ing the same aspect, topic and sentiment, and sim1 to measure the similarities of two

sentences with the same aspect and sentiment but discussing different topics.

sim0(C1, C2, a) =
ZX

z=1

P (C1|a, z)P (C2|a, z) (4.9)

sim1(C1, C2, a) =
X

z1,z22[1···Z]z1 6=z2

P (C1|a, z1)P (C2|a, z2) (4.10)

Intuitively, two sentences about the same aspect on the same topic should have high

semantic similarity; whereas two sentences that talk about two different topics under the

same aspect should have a relatively lower similarity. The semantic similarity between

two sentences is:

semantic sim(C1, C2, a) = sim0(C1, C2, a) + �sim1(C1, C2, a) (4.11)

where � is a damping factor with value less than 1.

Lexical-semantic similarity (LSS) of two sentences with same sentiment for an aspect

is measured as a weighted combination of their lexical sim and semantic sim as,
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LSS(C1, C2, a) = �lexical sim(C1, C2, a) + (1� �)semantic sim(C1, C2, a) (4.12)

where � is an empirically chosen parameter to trade-off between the weights for semantic

and lexical similarity.

4.4.3 Ranking of Reviews

Given a review sentence, we employ kNN search to find the k most similar sentences for

each of its aspects according to LSS measure. Since a target sentence C may contain

multiple aspects, we determine the importance of an aspect a to C as follows:

Imp(C, a) =

P
w2C P (w|w has aspect a)P

w2C P (w)
(4.13)

For each aspect a with Imp(C, a) > 0 , we return the top k ⇤ Imp(C, a) sentences

from the review corpus. For example, consider the following sentence

• very friendly staff, free wifi and a wondeful choice of free breakfast

It is found to contain aspects ‘Service’, ‘Amenities’, ‘Food’ with importances 0.25,

0.15 and 0.6 respectively. In Top 5 supporting sentences, we present a mix of supporting

sentences for each aspect in proportion to their importance in the target sentence (i.e. 1, 1,

3 respectively for our example). The Top 5 supporting sentences retrieved for the above

example are:

1. hotel is very nice and staff is friendly

2. free parking and wifi

3. free breakfast buffet was plentiful

4. rooms were clean, breakfast was very good
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5. rooms are fresh, staff is friendly and most importantly for me the breakfast was

amazing

Proportionately allocating supporting sentences from each aspect in the top-k results

diversifies the result set and ensures that a user is able to find information about whichever

aspect of the target sentence she wished to verify.

4.5 Experiments

We perform two sets of experiments to evaluate our proposed framework. We first com-

pare Author-ATS with state-of-the-art topic models using perplexity on test data and also

show a qualitative analysis. Then we evaluate the performance of SURF, for the task of

retrieving supporting opinions using human annotation, against keyword based search en-

gine Lucene and a competent word embedding model Word2Vec. We use two large real

world datasets: (a) hotel reviews from TripAdvisor [124], and (b) restaurant reviews from

Yelp.com. Table 4.2 shows the statistics of the two datasets.

Dataset # entity # author # review # sentence # vocab
TripAdvisor 12,773 781,403 1,621,956 20,244,293 980,323
Yelp 578 16,981 25,459 232,107 56,200

Table 4.2: Statistics of datasets used

4.5.1 Preprocessing

We pre-process both datasets by first converting all words to lower-case forms and remov-

ing domain independent stopwords2. We retain some negation stopwords (e.g.: not, can’t,

didn’t) and join them with the next word (so that ‘not good’ is treated as a single unit)

to help discover sentiment properly. We use common punctuations used for marking end

of sentences like ‘.’, ‘?’, ‘!’ to split a review into sentences. To further split a sentence

into segments we use punctuations used to separate clauses like ‘,’, ‘;’ and conjunctions

like ‘and’, ‘however’, ‘but’ as separators. Apart from the punctuations used for splitting
2http://www.ranks.nl/stopwords
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sentences we use punctuations used to separate clauses within a sentence like ‘,’, ‘;’ as

well as conjunctions like ‘and’, ‘however’, ‘but’ as separators.

Aspect words need not necessarily be single words but may consist of highly co-

occurring words (e.g. ‘front-desk’, ‘walking distance’). In computational linguistics

Pointwise Mutual Information (PMI) [67] has been widely used for studying such associ-

ations between words and finding collocations. We compute PMI score for each bigram

in the corpus and if the score is found to be considerably high (0.05 in our experiments)

they are treated as a single word.

To make the discovered aspects understandable and intuitive to humans, we provide

a few domain dependent seed words to the models. The seeds are only used during ini-

tialization and subsequent iterations of Gibbs sampling are not dependent on them. Table

4.3 lists the aspect seed words used in our experiments for both domains. We also use a

domain independent subjectivity lexicon3 to initialize sentiment distributions.

Aspects Seed Words
Value for Money value, rate, price
Room room, bed, bathroom, clean
Location location, walk, minute
Service staff, reservation, front-desk
Food restaurant, breakfast, buffet
Amenities pool, parking, internet, wifi

(a) TripAdvisor Dataset

Aspects Seed Words
Value for Money value, rate, portions, price
Service ambience, wifi, music, service
Food steak, rice, burger, cocktail

(b) Yelp Dataset

Table 4.3: Sample Aspect Seed Words

4.5.2 Parameter Settings

We empirically set the parameter values for ATS based models as: �0 = 3.0, �1 = 2.0,↵ =

0.1, � = 0.1, �0 = 1.0, �1 = 1.0, �2 = 3.0. These parameter values can be interpreted

3http://mpqa.cs.pitt.edu/lexicons/subj lexicon
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as our prior beliefs for the variable counts. For the non-parametric model we set the

concentration parameter � to be 10�8.

We use symmetric priors for all parameters except for � and �. The verbosity of

reviews is captured by a slightly higher prior frequency for domain stopwords (�0) than

aspect words (�1). Similarly, for sentiment priors, often the probability of neutral words is

more compared to sentiment words (e.g. people at the reception desk were very friendly).

Thus, it is more natural to choose an asymmetrical prior for sentiments for both entity

specific as well as author specific distributions. The iteration number for Gibbs sampler

was set to 1000. The value for damping factor � is set to 0.4 and the value for the trade-off

parameter � in equation 4.12 is set to 0.6 empirically.

4.5.3 Evaluation of Author-ATS Model

In this set of experiments, we examine the ability of Author-ATS to capture the opinions

in reviews.

We use perplexity as a measure of convergence of topics to indicate the generative

power of the models. Perplexity is derived from the likelihood of unseen test data and is

a standard measure for evaluating topic models.

Perplexity(Dtest) = exp

✓
�
P

d2Dtest
logP (d|Dtrain)P
d2Dtest

Nd

◆
(4.14)

The lower the perplexity, the less confused the model is on seeing new data, implying

a better generalization power.

We compare with the following state-of-the-art opinion models:

• LDA [7] : The basic topic model where words are generated from latent topic

dimensions. This does not consider the sentiment of words.

• TAM [83]: A topic model for opinion mining where words are generated from a

two-level hierarchy of aspect and topic. The aspect and topic are independent and

each aspect affects all topics in similar manner.
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• JTV [120]: A topic model especially for contentious documents where each word

has a topic and a viewpoint (sentiment).

We also implement a baseline model ATS based on three-level Aspect-Topic-Sentiment

hierarchy. We use this model to show the performance gain by just considering a hierar-

chical dependency between these dimensions while capturing an opinion.

For fair comparison, we try to keep the total number of dimensions as close as possi-

ble across models. In TripAdvisor dataset, we set the number of topics in the LDA model

to 100. For AuthorATS and ATS, we use 6 aspects, 5 topics for each aspect and 3 sen-

timents (positive, negative and neutral). The number of aspects and sentiments are the

same for Author-ATS (DP) but the number of topics was discovered by Dirichlet Process

automatically. TAM does not model sentiment, hence we use 6 aspects and 16 topics. For

JTV, we use 33 topics and 3 sentiments. In Yelp dataset, we use 3 aspects, but use asym-

metric number of topics for each of them. We observe that in restaurant reviews people

talk mostly about the food or drinks and discuss very few topics under price or service.

We use 1, 1, 100 as the number of topics for aspects Value for Money, Service and Food

respectively in our parametric models. Hence we use 103 topics for LDA, 3 aspects-33

topics for TAM (it does not allow asymmetric number of topics for different aspects), 33

topics and 3 viewpoints for JTV. We partition our dataset into train (80%) and test (20%)

sets and report five fold cross validation results.

Table 4.4 shows the results. We first note that all hierarchical models outperform the

basic topic model LDA. JTV outperforms the simpler LDA model by assuming that each

word in a review is chosen not only for its topic but also for the sentiment it conveys.

However, JTV assumes only a single aspect in the document, which does not hold true for

reviews, as they discuss multiple aspects of an item. TAM assumes a two level hierarchy

of aspect and topic, but in their modeling aspect and topics are independent. However,

in reviews, the topics discussed are often closely related to an aspect. Our ATS model

considers the appropriate relation between aspect-topic-sentiment in modeling of words

and can outperform other models. Author-ATS further improves the performance by con-

sidering author and entity characteristics as well as the thought patterns of the authors.
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We note that the performance of the non-parametric model is comparable with Author-

ATS, making it easier to use the model for any new domain without having much prior

knowledge.

Model TripAdvisor Yelp
LDA 5070 5737
TAM 2980 3468
JTV 3430 4370
ATS 2385 3337
Author-ATS 2212 2784
Author-ATS(DP) 2300 2829

Table 4.4: Perplexity values for different models.

Table 4.5 shows the top words extracted by Author-ATS as domain stopwords. Words

like ‘hotel’, ‘stay’, ‘trip’ etc. are extracted as stopwords for hotel domain since they occur

very frequently irrespective of the aspect being discussed. Although these words do not

convey any aspect information, they are domain dependent and are not found in a general

stopword dictionary.

Dataset Domain Stopwords
TripAdvisor hotel, nice, stay, trip, times, day, place, back

Yelp good, place, food, time, order, bit, make

Table 4.5: Domain stopwords from Author-ATS.

Table 4.6 shows top words extracted for a few aspects, categorized into topic-sentiment

groups. As we can observe that the majority of the words are correctly clustered in as-

pects, and further into specific topics. For example, the first topic for aspect Room is

about in-room experience (‘bed’,‘king-size’,‘view’), whereas the second topic seems to

be about bathroom (‘shower’, ‘towels’, ‘tub’). We also observe that the model is able to

obtain contextual sentiment terms which are aspect-topic coherent. For example, words

such as ‘noise’, ‘night’, ‘hear’ could be assigned negative sentiment labels for topic 0 of

Room due to the context in which they are used, e.g., when describing a room, these words

probably indicate a noisy room bothering their sleep at night.

Impact of Seed Words We vary the number of seed words for an aspect and examine its
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Aspect: Room
Topic 0

Positive Negative Neutral
bed noise room

comfortable night floor
spacious sleep view
king-size window size

clean hear modern
Topic 1

Positive Negative Neutral
bathroom small room

large door bathroom
tub barely shower

shower tiny water
shampoo kitchen towels

Aspect: Service
Topic 0

Positive Negative Neutral
staff night staff

extremely greet call
welcoming problem front-desk

care asked service
friendly manager shuttle

Topic 1
Positive Negative Neutral

card called check-in
reservation upgrade day

airport manager arrived
polite rude directions

excellent questions time

Table 4.6: Top words for aspect-topic-sentiments found by Author-ATS for TripAdvisor
dataset.

effect on the aspect discovery. We use p@n, the fraction of correctly discovered aspect

words among the top n words, to evaluate the quality of the results.

The average precision of top-n words for different aspects is obtained by taking the

average over all combinations
�
6
m

�
of seed words where m is the number of selected seed

words, 2  m  6. Figure 4.5 shows the results. We observe that the average precision

increases with the number of seeds, and stabilizes when m � 4. This demonstrates that

providing a handful of seed words can go a long way for discovering intended, explainable

domain specific aspects.

4.5.4 Evaluation of SURF

We now evaluate Author-ATS model and LSS measure on retrieving sentences that are

relevant to a target sentence. A sentence is considered relevant if it expresses similar

opinions as the target sentence. A sentence with multiple aspects is relevant if it expresses

at least one of the opinions in the target sentence. Precision of the top-k answers are

manually determined by three annotators and conflicts are resolved by majority voting.

Recall that LSS considers both lexical and semantic similarity. The computation of se-

mantic similarity requires the aspect-topic-sentiment distribution which is only available
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(a) Aspect: Room (b) Aspect: Location

(c) Aspect: Service (d) Aspect: Food

Figure 4.5: Impact of varying number of seeds.

in the baseline ATS and Author-ATS models. We define a similarity measure called CJSD

that can be used by the various topic models to facilitate comparison. CJSD measures the

lexical similarity of two sentences as the cosine similarity of their tf-idf vectors, while the

semantic similarity is measured by the similarity of their topic distributions using Jensen-

Shannon Divergence(JSD) as follows:

CJSD(s1, s2) = � cosine sim(s1, s2) + (1� �) JSD(s1, s2) (4.15)

We randomly select 5 hotels from TripAdvisor and 5 restaurants from Yelp datasets.

For each hotel/restaurant, we randomly pick 10 target sentences and retrieve their support-

ing sentences. The topic distributions of these sentences are obtained using LDA, TAM,

JTV, and the proposed models ATS and Author-ATS.

Table 4.7 shows the average precision for top 5, 10 and 20 results retrieved using var-

ious topic models with similarity measure CJSD. We see that Author-ATS model always

outperforms other topic models for the task of retrieving supporting sentences. This is

consistent with the perplexity results of the models obtained previously.

Table 4.8 shows the average precision using variants of the proposed model with LSS.
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TripAdvisor Yelp
p@5 p@10 p@20 p@5 p@10 p@20

LDA 0.56 0.48 0.45 0.43 0.42 0.42
TAM 0.58 0.53 0.52 0.49 0.47 0.47
JTV 0.51 0.47 0.53 0.41 0.41 0.43
ATS 0.62 0.60 0.55 0.60 0.57 0.44
Author-ATS 0.68 0.62 0.61 0.60 0.58 0.56

Table 4.7: Average precision using CJSD

TripAdvisor Yelp
p@5 p@10 p@20 p@5 p@10 p@20

ATS 0.69 0.62 0.58 0.62 0.59 0.58
Author-ATS 0.74 0.66 0.60 0.68 0.64 0.62
Author-ATS (DP) 0.64 0.63 0.57 0.62 0.56 0.54

Table 4.8: Average precision using LSS

Clearly, using LSS always yields a better precision compared to using CJSD, with the best

performer being the Author-ATS with LSS combination. SURF framework utilizes this

combination for retrieving top-k supporting reviews.

Next, we compare SURF with the following methods:

• Lucene: A popular keyword based ranking method. It is implemented using Apache

Lucene4. We used its default combination of vector space model and boolean model

for retrieval.

• Word2Vec: [70] A state-of-the-art algorithm for word embeddings using neural net-

work. It uses a shallow, two layer neural network to map words to a vector space.

Supporting sentences are ranked with Word Mover’s distance using the word em-

beddings. We use the Word2Vec implementation of gensim5 and train on TripAdvi-

sor dataset using CBOW algorithm with context window set to 5 as recommended

by the authors. We do not train Word2Vec on the Yelp dataset as it is too small.

We set the vector dimension to 500 based on grid search. We also compare with

Word2Vec model pre-trained on the large GoogleNews dataset6.

Table 4.9 shows the average precision for the top 5, 10 and 20 results retrieved using
4https://lucene.apache.org/core/
5https://pypi.python.org/pypi/gensim
6https://code.google.com/archive/p/word2vec/

69



CHAPTER 4. FINDING SUPPORTING OPINIONS FROM REVIEWS

Lucene, Word2Vec and SURF. We observe that Word2Vec performs better when trained

on review data, compared to the model trained on general news data. This confirms that

domain knowledge is important. Word2Vec trained on domain data can outperform the

keyword based similarity measure employed by Lucene due to considering the semantic

similarity of words. It is evident from the results that SURF significantly outperforms

existing approaches for opinion search by considering both the lexical and semantic sim-

ilarities.

p@5 p@10 p@20
Lucene 0.67 0.58 0.52
Word2Vec (GoggleNews) 0.62 0.48 0.39
Word2Vec (TripAdvisor) 0.70 0.61 0.51
SURF 0.74 0.66 0.60

(a) TripAdvisor

p@5 p@10 p@20
Lucene 0.61 0.54 0.49
Word2Vec (GoogleNews) 0.52 0.47 0.37
SURF 0.68 0.64 0.62

(b) Yelp

Table 4.9: Comparison with Lucene and Word2Vec

For evaluating the coherence of retrieved set of supporting reviews for an aspect, we

look at their corresponding user given aspect ratings. For each aspect of each review sen-

tence, we retrieve its top-k supporting sentences. Then we compute the standard deviation

of the ratings for that aspect in the retrieved supporting reviews. We aggregate the stan-

dard deviation values for each aspect over all the reviews and look at the average value.

Figure 4.6 shows results for two aspects from the TripAdvisor dataset. Other aspects also

had similar trends.

We rank the retrieved results based on their similarity to the target sentence. We

observe that as expected, the average standard deviation increases as we retrieve more re-

sults, implying similarity among the opinions reduces if we keep increasing the size of the

retrieved set. We observe that SURF has a smaller average standard deviation compared

to Word2Vec and Lucene. The gap between the performance of SURF and the other meth-

ods also widens as the size of the retrieved results increases. This demonstrates SURF’s
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Figure 4.6: Average standard deviations of aspect ratings for supporting reviews. Smaller
deviation implies greater coherence.

superiority in retrieving reviews with similar opinions. While Word2Vec can capture se-

mantic similarity and sentiments, the results retrieved are rather noisy, especially as k

increases. On the other hand, Lucene relies solely on word similarity ignoring the context

or underlying semantics, resulting in a large standard deviation.

4.5.5 Case Study

Table 4.10 shows samples of supporting sentences extracted by the different methods. We

observe that the sentences retrieved by SURF are semantically similar although the words

may be quite different from the target sentence. In contrast, Lucene may retrieve irrelevant

sentences matching a keyword used in a totally different context. Word2Vec considers

words used in proximity of one another (e.g. bed, pillow with microwave, coffemaker

etc.) to be similar which clearly does not always imply conformity of opinions.

Furthermore, the retrieved results of SURF are categorized according to their aspects.

This makes it easy for users to interpret the results. Particularly if a target sentence has

multiple aspects, then SURF will retrieve results for each aspect. For example, for the

second target sentence shown in Table 4.10, the results contain supporting statements for

both room and service. If a user then wishes to view more results for one of those aspects

it will be possible for SURF to fetch more results only for that aspect.
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Target Sentence: bedroom had the most comfortable mattress, feather soft pillows as well as
firmer ones, they thought of keeping every guest comfortable

Supporting Sentences by SURF Supporting Sentences by
Lucene

Supporting Sentences by
Word2Vec

Aspect : Room
Statement: bill clinton suite was
huge with two baths, a wonderful
jacuzzi and a comfortable bed

bed was very comfortable,
as were the large pillows

The room had a microwave,
coffemaker, hairdryer, bottled
water replenished each day
(x)

Aspect : Room
Statement: the beds are the most
comfortable of any hotel I have
stayed in

we were recommending it
for our out of town wedding
guests, and wanted to make
sure they were comfortable
(x)

It really is a shame because
the bed and pillows were
super comfortable and we
could have had a great night
sleep on both nights

Aspect : Room
Statement: the beds were
comfortable and they had a good
selection of towels

who would have imagined
that somebody actually
thought about where a guest
would watch tv (x)

They took regular sized hotel
rooms and divided them into
a sitting room with a bedroom
with a door, keeping the
bathroom to divide the two
areas (x)

(a) Target Sentence with Single Aspect

Target Sentence: the check in was quick, with friendly polite service, and the room was very big
with a very comfortable king size bed

Supporting Sentences by SURF Supporting Sentences by
Lucene

Supporting Sentences by
Word2Vec

Aspect : Room
Statement: bed was extremely
comfortable, I’m hard to please
in the department because I sleep
on a sleep number bed at home

the room was a great size;
bed was very comfortable

The first room assigned was
very small and dingy with one
king sized bed that just fit (x)

Aspect : Room
Statement: room size was large
and bed was comfortable

king size bed was comfy

bathroom was well furnished
with soap, shampoo/
conditioner, very large, soft
towels - perfect (x)

Aspect : Service
Statement: service is
very friendly

our room faced denny park
(x)

the room was large and the
bed very comfortable and our
room faced the street and it
was very quiet

(b) Target Sentence with Multiple Aspects

Table 4.10: Sample Supporting Sentences Retrieved by SURF, Lucene and Word2Vec.
Aspects shown for SURF are discovered by Author-ATS model.
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4.6 Summary

In this chapter we have proposed a framework for finding supporting sentences to help

a user get an idea of consensus when researching about an entity. To this end, we have

developed a hierarchical topic model to jointly infer aspect-topic-sentiment for capturing

an opinion expressed in a review sentence. We have also defined a fine-grained similarity

measure considering both lexical and semantic similarity to retrieve similar sentences.

Author-ATS model encodes the coherent writing style of a review by constraining the

aspect distributions dynamically. It considers the sentiment distribution of a review to

have influence of both the author and the entity. Experimental results on two real world

review dataset indicate that the proposed approach outperforms existing techniques for

opinion modeling as well for retrieving supporting opinions.
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Chapter 5

Improving Usability of Health Information

Online: Modeling User-Drug Interactions

5.1 Introduction

In the last decade, reporting health information online has become widespread via so-

cial networking sites (e.g., Twitter), health forums (e.g. WebMD, HealthBoards), health

monitoring apps (e.g. Flaredown, Symple) and so on. People not only rely on online opin-

ions for product purchases but also for information on different diseases and treatments.

People increasingly search for health information, with 59% of the adult US population

seeking health-related information online [25], and nearly half of US physicians relying

on them for professional use [24]. Lately with the advent of health 2.0, users across the

globe take a part actively by not only looking up health information online but also by

self-reporting clinical experiences with treatments.

Traditionally, pharmaceutical companies carry out laboratory clinical trials and post-

market surveillance, to discover side effects of drugs. However they are either limited in

number or incur significant time delays to gather enough information [16, 100]. With the

abundant amount of self-reported medical information available online, recently there has

been to a surge of research interest to discover medical insights such as identifying poten-

tial side effects of drugs [88, 136, 55] from these resources. While these large amount of

user-reported health information can help complement existing medical knowledge and
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speed up discoveries of potential drug reactions [116, 126], there remains a widespread

concern of whether the reported side effects are truly due to the drugs [14, 86].

Similar to the confounding factors explored in the domain of e-commerce in previous

chapter (Chapter 3, Chapter 4), there could be some underlying factors that affect a pa-

tient’s experience with a particular treatment and thus make the experienced side effects

different for different people. Table 5.1 shows experiences with two drugs by different

patients. From the sample reports it can be seen that while using the same drug, different

people experience different symptoms with varying severity.

Treatments User Severity
Rating Reported Symptoms

Clonazepam
u1 3 decreased appetite, paralyzing anxiety
u2 1 diarrhea
u3 4 dizziness, nausea, vomiting, fatigue, tiredness

Levothyroxine
u4 4 nausea, dizziness, dissociation
u5 3 weight gain
u6 3 weight gain, hair loss, quivering, insomnia

Table 5.1: Sample symptom reporting by different patients for two treatments in Flare-
down app.

In a realistic scenario, patients experience a set of clinical symptoms which could

potentially stem from multiple confounding factors. This makes it difficult to claim if the

symptoms are side effects of a drug, by a patient with little medical training. Furthermore,

a patient is often under the influence of multiple drugs, and the experienced symptom

could be a synergistic effect caused by a combination of the concurrent drug use, instead

of being side effects of only one of them.

Our preliminary investigation on a real-world dataset shows that among the reported

symptoms, there exists a significant percentage of unsubstantiated1 side effects. Many of

these symptoms are, in fact, more correlated to the underlying medical condition(s) of the

user than the treatments. With more and more people seeking health-related information

online [25], it is important that these sources provide accurate information tailored ac-

cording to individual user’s condition, to prevent unnecessary anxiety [5, 108]. This will

help in reducing the number of users who might be reluctant to take a drug due to the long
1not associated with the drug as per expert medical knowledge
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list of reported side effects associated with it, even though many of those are not applica-

ble to her. This motivates us to develop a framework to better characterize the complex

relationship between user–condition–treatment and personalize the prediction of possible

symptoms and their severity for a specific user. This motivates us to develop a framework

to better characterize the complex relationship between user–condition–treatment and per-

sonalize the prediction of possible symptoms and their severity for a specific user. Such

a system would allow the patient to make an informed decision when choosing between

alternate treatments, by weighing in the impact of potential side effects on the expected

quality of life.

We formulate a multi-objective learner to predict both the set of symptoms and the

severity rating that a user reports while being administered with a set of treatments. We

design a novel deep neural network architecture called Multi objective Mixture of Experts

(MoMEx) to encode the complex relationship between user–condition–treatment combi-

nation and the target variable of symptoms. MoMEx uses a gating network inspired from

the mixture of experts model [38, 42]. It probabilistically combines the predictions from

three local expert networks that are built to predict symptoms based on user, her set of

medical conditions, and a combination of treatments. The gating network has an added

advantage in that we are able to use the probabilities assigned to each of the local experts

to explain why the model predicts a certain symptom. This transparency of the predictive

framework is crucial for a user to make a better health choice decision with confidence.

The key contributions of this work are as follows:

• Systematically investigating the nature of self reported symptoms in an online health

tracking app and their correlation with the user and her pre-existing medical condi-

tion(s) apart from the treatment(s);

• Designing a multi-objective neural architecture, called MoMEx, for predicting symp-

toms and their severity score, based on the interaction between user, treatments, and

conditions;

• Conducting extensive evaluation of MoMEx on a real-world dataset, to demonstrate
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its effectiveness compared to state-of-the-art baselines and architectural variants.

The remainder of this chapter is organized as follows. We start with conducting an

initial analysis on a real world dataset and formally defining our problem statement in

Section 5.2. In Section 5.3, we proceed to describe the technical details of our proposed

MoMEx framework. Section 5.4 presents the effectiveness of MoMEx in comparison to

state-of-the-art baselines and summarizing our contributions and findings in Section 5.5.

5.2 Preliminaries

We first describe the dataset, highlighting different signals and conduct an initial analysis

to illustrate the challenges and motivate our approach.

5.2.1 Dataset

We use a public dataset available on Kaggle2 from the Flaredown (FD) app3. The app

users can ‘check-in’ each day to record their treatment(s), and the experienced symptoms

along with their severity scores (in the range of 0 to 4). Note that this also includes

‘check-in’ from users who did not experience any side effects for their treatment(s) and

hence their list of side effects is nil and the severity score is 0.

The conditions, treatments and symptoms are pre-defined medical terms in the app,

which users need to select from a drop-down list. Treatments are not necessarily pre-

scribed drugs, but could also be alternative medicine or supplements, vitamins, physio-

therapy, exercise and so on. For the severity rating, although the app allows users to report

severity for each symptom, we assume the maximum reported severity in a ‘check-in’ to

be the representative for the reported set of symptoms. We believe this assumption is

reasonable since typically users report many (10 on an average) symptoms in a ‘check-

in’, and might not meticulously note down the severity of each one of them. We filter

out those symptoms and treatments which have been mentioned less than 5 times in the

2
https://www.kaggle.com/flaredown/flaredown-autoimmune-symptom-tracker

3
http://flaredown.com/
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whole dataset. We collect the set of medical conditions mentioned by a user across all her

‘check-ins’. Statistics of the dataset are shown in Table 5.2.

Number of treatments 1693
Number of users 3461
Number of unique conditions 1895
Number of unique symptoms 2521
Number of evaluations (‘check-in’) 14,879

Table 5.2: Statistics of the dataset.

5.2.2 Preliminary Study

To understand the nature of user reported symptoms, we first carry out an initial study to

answer a few questions.

Q1. Can all user reported symptoms be substantiated by authoritative medical

source as treatment side effects?

We compare the reported symptoms in the FD dataset with those published on the

Mayo Clinic portal4, which contains curated expert information about drugs and their

side effects categorized into common, less common, and rare. For each treatment in the

FD dataset, we obtain the set of all its symptoms reported in a ‘check-in’ across all users.

Since a ‘check-in’ might mention multiple treatments, we associate a symptom to all the

treatments mentioned in a ‘check-in’. This ensures that even if the symptom occurred

solely because of a single treatment, it is still considered as substantiated. Then we match

the treatment name to a drug-family in the Mayo Clinic portal and consider the listed side

effects as the ground truth.

Table 5.3 shows that only 33.29% of reported symptoms are known common side

effects of a drug, while 18.76% and 7.60% are less common and rare side effects respec-

tively. This indicates that comparatively lesser known side effects of a drug are indeed

reported by users and their discovery can help augment the existing medical knowledge

base. However, we also note that an alarming 40.35% of reported symptoms do not match

4
mayoclinic.org/drugs-supplements/
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with any known side effects of any of the administered drug. This motivates us to further

analyze the reported symptoms for potential confounding factors.

Category Percentage
Common 33.29%
Less Common 18.76%
Rare 7.60%
Unsubstantiated 40.35%

Table 5.3: Percentage breakdown of reported symptoms in the different categories of side
effects for a drug.

Q2. Do the pre-existing conditions of a patient have any correlation to the symptoms

she reports across drugs?

We analyze whether pre-existing conditions of a user influence the symptoms she ex-

periences. For e.g., a patient suffering from insomnia may experience fatigue or drowsi-

ness, and report them as side effects of her current treatment.

For each reported symptom in the FD dataset, we compare its association with various

treatments to its association with various medical conditions. We define three sets of

users:

• Us : Set of users who have reported the symptom s

• Uc : Set of users who suffer from condition c

• Ut : Set of users who have taken treatment t

For each symptom s, we quantify its association with condition c and treatment t,

using Jaccard similarity coefficient

J(s, c) =
intersection(Us, Uc)

union(Us, Uc)
(5.1)

J(s, t) =
intersection(Us, Ut)

union(Us, Ut)
(5.2)

We consider a symptom s is more correlated with a condition than a treatment, if there

exists a condition c, for which J(s, c) > J(s, t) for all t 2 T , where T is the total number
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of treatments in the dataset. We find that around 48.15% of symptoms are more correlated

with a condition than with a treatment, indicating that the pre-existing conditions of a user

are linked to the symptoms reported.

5.2.3 Problem Formulation

Our preliminary study shows that the reported symptoms could be possible side effects

of one of the treatments, or be correlated with some underlying medical conditions of the

user. This motivates us to propose an approach towards predicting the symptoms that a

patient might report while administering a combination of treatments.

Figure 5.1: Interaction structure between user, her conditions, treatments, reported sever-
ity rating and symptoms

A graphical representation of the interactions is shown in Figure 5.1. Users u1,u2

have conditions {c1, c2, c3} and {c2} respectively . The check-ins of a user evaluate a set

of treatments as shown by the directed edges. Each edge is labeled with a numeric score

denoting severity, and a list of reported symptoms among s1, s2, s3. A sample evaluation

point in the graph can be interpreted as, user u1, suffering from conditions {c1, c2, c3},

has experienced symptoms {s1, s2} with a severity of 3, while taking treatments {t2, t3}.

We formulate the problem as a multi-objective prediction task. For a user u and a set

of treatments ⌧ , we predict:

• Severity of Symptoms: a numerical rating ru⌧ , real-valued number in the range

[0, 4].
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Figure 5.2: Proposed neural network architecture for severity rating and symptom predic-
tion.

• List of Symptoms: a sparse S dimensional binary vector su⌧ , indicating the out-

come symptoms where S is the total number of unique symptoms.

5.3 Proposed MoMEx Framework

We propose a neural network architecture, called MoMEx (Multi-objective Mixture of

Experts), for predicting user reported symptoms along with their severity rating. The input

signals to MoMEx are user, a set of treatments and her pre-existing medical conditions,

as depicted in Figure 5.2.

We use three separate embeddings to map these inputs to a lower dimensional vectors

of dimension k. Let xu, yt, zc denote the latent feature vectors of user u, treatment

t, and condition c respectively. Consider a user u, associated with a set of conditions

�, has evaluated a set of treatments ⌧ in a ‘check-in’. To encode these sets we employ

deep averaging network (DAN) [37], which has proven to be a very effective modeling

technique for un-ordered sequences. This helps us capture the dependencies between co-

existing conditions (and simultaneous treatments).

We first embed each treatment t 2 ⌧ using treatment embedding to receive a collection

of latent vectors {yt}. Then we take an average of the latent vectors of all the treatments in

the treatment set (⌧ ) to encode their combination. Thereafter, this vector is passed through
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multiple feed-forward layers to capture more abstract representations of the concurrent

treatments. The output of the last feed-forward layer gives us a k dimensional vector q⌧ ,

denoting a latent representation of the combination of treatments. We similarly encode the

set of conditions to a k dimensional vector, v� denoting the set of pre-existing conditions

of user u.

Given the latent representations of user, treatments and conditions, we now proceed to

describe the prediction tasks.

5.3.1 Predicting Severity of Symptoms

Since the severity rating contains characteristics of both the user and the treatments, we

combine the corresponding latent features by concatenating their embedding vectors xu

and q⌧ . However, a simple concatenation is unable to capture the complex structure im-

plied in the users’ historical interactions. We add multiple fully connected layers on the

concatenated vector introducing flexibility and non-linearity. The output of the last hidden

layer L is transformed to a real valued rating ˆru⌧ .

ˆru⌧ = f(WLhL�1 + bL�1) (5.3)

where W and b are the weight matrix and bias vectors and f is an activation function for

which we use tanh. We obtained comparable results with Relu and slightly worse results

for sigmoid, as activation functions. We formulate this as a regression problem and the

loss function is constructed as:

Lr =
X

(u,⌧)2X

(ru⌧ � ˆru⌧ )
2 (5.4)

where X represents the training set, ru⌧ represents the ground truth rating and ˆru⌧ repre-

sents the predicted severity rating for treatment set ⌧ by user u.
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5.3.2 Predicting List of Symptoms

Now, we describe our approach for predicting the list of symptoms su⌧ , reported by user

u for treatments ⌧ . This is a sparse binary vector, where the mth entry indicates whether

the mth symptom has been reported. We consider this as multiple individual binary clas-

sifications, which had been shown as an effective technique in the past [61], where the

correlation among labels is exploited by the latent space in the model.

Motivated by our initial study (recall 5.2.2), we realize that the reported symptoms

su⌧ , could be due to the treatments ⌧ , or caused by the pre-existing conditions � of the

user u. Hence, we learn a model to predict su⌧ given the embeddings of user, treatment

set and a user’s conditions i.e. xu, q⌧ and v� respectively.

A plausible approach could be concatenating the vectors and using a multi-layer per-

ceptron to get a binary prediction for each symptom. However, in such a network it will be

difficult to rationalize why a certain symptom was predicted - whether it was because of

the treatments or condition of the user or a complicated non-linear combination of them.

Inspired from the Mixture of Experts (MoE) approach [38, 42] we develop three sim-

pler local experts namely, Etreatment, Euser, and Econd, taking as input the treatment

feature(q⌧ ), user feature(xu), and condition feature(v�) respectively. However, unlike

the usual MoE architecture, inputs to our experts are specific to only a single factor giving

the experts a semantic meaning for their specialization and makes their decisions inter-

pretable. The predictions from the local experts Etreatment, Euser and Econd, are denoted

as ŝtreatment
u⌧ , ŝuseru⌧ , and ŝcondu⌧ respectively. The mth entry of the vector ŝtreatment

u⌧ de-

notes the probability of occurrence of the mth symptom according to the treatment expert

classifier.

Finally, we need to combine the predictions from these individual experts to output a

single prediction ŝu⌧ . One way of doing that could be averaging their predictions, but that

does not make sense for our scenario. When we average the output of multiple classifiers

and try to match it to a target value, we force each of the classifier to compensate for the

combined error made by the other classifiers. However, in our scenario, there are certain
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symptoms that can be explained by only a single expert classifier (say, treatment) and we

can ignore the results of the other classifiers for that case. This motivates us to develop

a gating function where for each input an expert is selected with some probability. This

is most similar to an ensembling approach [27], where the final prediction is a weighted

average of the local expert predictions. The weights used for combining the expert pre-

dictions are the probabilities assigned by the gating function to the experts. The final

prediction is a weighted average of the local expert predictions, where the weights are the

probabilities assigned by the gating function to the experts.

For a particular input from user u for a set of treatments ⌧ , the gating function takes

as input the concatenation of user, treatment and condition vectors (xu,q⌧ and v�), and

outputs a probability distribution, wtreatment
u⌧ , wuser

u⌧ , and wcond
u⌧ for treatment, user and

condition experts respectively. The final prediction is computed as

ˆsu⌧ = wtreatment
u⌧ · ŝtreatment

u⌧ +wuser
u⌧ · ŝuseru⌧ +wcond

u⌧ · ŝcondu⌧ (5.5)

where wtreatment
u⌧ ,wuser

u⌧ , and wcond
u⌧ are vectors of dimension S, the total number of

symptoms. Since they denote probability distributions for weighting the three classifiers,

for a particular symptom they sum to one i.e. for symptom s 2 {1, · · · , S}, we have

wtreatment
u⌧ (s) + wuser

u⌧ (s) + wcond
u⌧ (s) = 1 (5.6)

where wtreatment
u⌧ (s) denotes the probability of selecting the prediction of the treatment

expert classifier for the sth symptom, others are defined similarly. The gating network

helps us in examining our predictions more closely. For a symptom, we can look at the

predictions of the three classifiers and their corresponding weights to understand the likely

reason for it/

We now need to define the structures of our expert networks and the gating network.

We choose similar structures, consisting of a stack of fully connected layers, for all three

expert classifiers but with different parameters. The gating network multiplies its input

with a trainable weight matrix and applies a sigmoid non-linearity to convert it to a vector
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of dimension S. This transforms the input from latent feature space to the symptom di-

mension. By multiplying this vector with a second trainable weight matrix, we transform

the value in each symptom dimension, to a 3-dimensional vector representing the weights

for each of the three experts. With softmax activation on these vectors, its elements are

converted to values in the range [0, 1] that add up to 1. We train the gating network by

back-propagation, along with the rest of the model. Gradients are also back-propagated

through the gating network to its inputs. We define this loss function as

Ls =
X

(u,⌧)2X

⇣
wuser

u⌧ · BCE(su⌧ , ŝuseru⌧ ) +wtreatment
u⌧

· BCE(su⌧ , ŝtreatment
u⌧ ) +wcond

u⌧ · BCE(su⌧ , ŝcondu⌧ )
⌘

(5.7)

where X represents the training set, su⌧ represents the ground truth symptom vector of

treatments ⌧ by user u and BCE is the binary cross-entropy loss. A loss function like

this will encourage specialization, since we are comparing the prediction of each expert

separately with the target and then training to reduce the weighted average of all these

discrepancies, where the weights are the probabilities of selecting the experts through the

gating network.

5.3.3 Multi-Objective Learning

We integrate both the prediction tasks into a unified multi-objective framework with a

weighted summation of the losses

L =
X

(u,⌧)2X

�rLr + �sLs (5.8)

where Lr and Ls are the losses for severity prediction and symptoms prediction respec-

tively and �r and �s are the weights. In our experiments, we set them to be equal but one

could vary them depending on which task is more important.
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5.4 Evaluation

We carry out our experiments to evaluate the effectiveness of the proposed MoMEx frame-

work.

We divide the dataset into training (80%), validation (10%) and test (10%) sets using

five fold cross validation. The hyper-parameters are tuned via grid search on the validation

set. The embedding dimensions are 64 unless otherwise mentioned. The number of fully

connected layers, in the DAN for encoding the treatments and conditions is 2, in the

rating predictor component is 3 for encoding the user-treatment interaction, in the local

expert models and gating network are 3 and 2 respectively consisting of 500 neurons. We

randomly initialized all model parameters with a Gaussian distribution (with mean 0 and

standard deviation 0.01). The batch size for mini-batch training is 256 and the network is

optimized using Adam[46] optimizer and is implemented using Keras5. The learning rate

is set to 0.001.

5.4.1 Prediction of Severity Rating

We first evaluate our model on severity rating prediction and use the most popular metrics,

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for error measure-

ment. We compare MoMEx with a number of state-of-the-art rating prediction models,

namely, URP [3] , SVD++ [49] and FM [101].

We also compared with other latent factor based models, namely NMF [54] and BPMF

[106]. However they performed much worse compared to SVD++. Therefore, we con-

sider SVD++ to be the representative of latent factor models and report its results. We use

the librec6 package for implementation of URP and SVD++. For Factorization Machine

we use the libFM implementation [102] by the author.

Note that, in a traditional recommendation setting, a rating is available for a user-item

pair. However, in our scenario, the severity rating is not always associated with a single

treatment but with a set of treatments that a user has mentioned during the ‘check-in’.
5
http://keras.io/

6https://www.librec.net/
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Therefore, for URP and SVD++, we consider each unique treatment-set to be an item.

FM can consider any number of real valued features for making the prediction, therefore

its input is similar to MoMEx.

The number of latent factor is important in determining a model’s capability. We vary

this in the range {8, 16, 32, 64, 128, 256} and compute accuracy for competing models.

For MoMEx, we vary the dimensions of latent user, treatment vectors as they are similar

in spirit with the latent factors of a CF model for predictive capability [33].

(a) Mean Absolute Error (b) Root Mean Square Error

Figure 5.3: Performance comparison for rating prediction with varying number of latent
factors.

Figure 5.3 shows that our method consistently achieves the best performance. This

shows that traditional rating prediction systems like SVD++ and URP are not as capable

for handling scenarios where a rating is not for a specific entity but for a set of entities.

Our framework is able to model that and can learn non-linear interactions between a user

and item set through the use of hidden layers in the network. It outperforms the second

best method SVD++ with a 4.07% and 3.09% improvement on an average, in terms of

MAE and RMSE respectively. Furthermore, it is more robust to variations in number of

latent factors, as SVD++ starts over-fitting with higher number of factors.

5.4.2 Prediction of Symptoms

The prediction of the list of symptoms reported by a user is a challenging task as the

class distribution is highly skewed. In each ‘check-in’, only a few symptoms are reported

among a huge list of symptoms. We use the standard precision, recall, and F1-score of the
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positive class (i.e. of the reported symptoms) as evaluation metrics.

To understand the contribution of each of the input signals, we first perform an ablation

study with our MoMEx model. We use different subsets of the three input signals, namely,

user, treatment and a user’s medical conditions, and note down the model performance.

Table 5.4 shows the results. Unsurprisingly, MoMEx achieves the best F1-score when it

takes into consideration all the three input signals, instead of taking a subset of them. This

proves the necessity of modeling all the three contributing factors in symptoms reporting.

Input Signals for MoMEx Precision Recall F1-Score
user + treatment 0.874 0.739 0.801
treatment + condition 0.836 0.728 0.778
user + condition 0.880 0.764 0.818
user + treatment + condition 0.901 0.794 0.843

Table 5.4: Performance of ablation study using different subset of input signals in Mo-
MEx. MoMEx performs the best when it considers all three input signals.

We also compare MoMEx with the following baselines using other neural architectural

variants:

• Multi-Objective Multi Layer Perceptron(MoMLP) : We replace the mixture of

experts network with Multi Layer Perceptron. We concatenate the user-, treatment-

, condition-latent vectors and use MLP layer to predict the list of symptoms. We

experimented with 1�3 number of fully connected layers for the MLP, and reported

the best results.

• Single Objective Mixture of Experts(SoMEx) : We predict only the symptoms

using a single loss function

Table 5.5 shows that using the Mixture of Experts gives superior performance com-

pared to Multi-Layer Perceptron. Furthermore, using a single objective loss function

results in a slightly worse performance compared to MoMEx. This indicates that the joint

modeling of both the severity rating and symptoms using multi-objective learning benefits

the symptom prediction task, as both of them essentially constitute a single ‘check-in’ by

a user and are therefore connected. When a user gives a severity rating of 0, we learn that

89



CHAPTER 5. MODELING USER-DRUG INTERACTIONS

the symptom experienced by this user is likely to be nil. On the other hand, when a user

gives a high severity rating, the list of symptoms to be predicted is likely to be long.

Method Precision Recall F1-Score
MoMLP 0.854 0.753 0.801
SoMEx 0.879 0.779 0.826
MoMEx 0.901 0.794 0.843

Table 5.5: Comparison among baseline neural architectures. All competitive models use
all three input signals. MoMEx outperforms alternate baseline neural architectures.

Finally, we compare MoMEx with Gradient Boosting Machine, K Nearest Neigh-

bour, and Random Forest classifiers. We use the implementations in scikit-learn python

package 7 and XGBoost library 8 for the baselines. Table 5.6 shows that MoMEx clearly

outperforms these methods.

Method Precision Recall F1-Score
XGBoost 0.291 0.732 0.415
K Nearest Neighbor 0.821 0.580 0.679
Random Forest 0.815 0.660 0.729
MoMEx 0.901 0.793 0.843

Table 5.6: Comparison with state-of-the-art traditional ML classifiers. All competitive
models use all three input signals. MoMEx outperforms all comptetitive traditional ML
classifiers.

XGBoost achieves a comparable recall but at a very low precision, whereas K Near-

est Neighbour and Random Forest suffer in recall due to the highly skewed distribution.

MoMEx is able to alleviate this by exploiting the correlation between the label space

(symptoms) using the weights of the shared hidden layers.

The labels are not always mutually exclusive but might be correlated with each other.

For e.g. the occurrence of one side effect might influence another one as well (e.g. insom-

nia and headache). Therefore, in MoMEx the loss function is not a single cross-entropy

that distributes the probability over the side-effects but individual binary cross-entropies.

However, their predictions are not completely independent as they are connected to the

outputs from the hidden layers of the expert and gating networks. These hidden layers

7http://scikit-learn.org/stable/index.html
8https://github.com/dmlc/xgboost
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can learn to adjust the weights of the output according to the correlation among the la-

bels. Using such hidden bottleneck layers and individual binary predictors have shown

to be very effective for highly sparse multi-label classification for handling sparsity and

correlation in the label space [61, 32].

5.4.3 Case Study

A major advantage of a mixture of experts framework is that the gating network outputs

a probability distribution over the local experts, Euser, Etreatment, and Econd built using

user, treatment, and condition respectively. The prediction of a symptom for a given user

is based on the weighted probabilities of these local experts. This distribution provides

insight to the predicted symptoms.

As noted in our preliminary study of the dataset (in Section 5.2.2), while many of the

reported symptoms are substantiated side effects of one of the treatments, a significant

percentage of them are not substantiated. We first characterize the difference between

probability distributions of substantiated versus unsubstantiated side effects. Figure 5.4

shows the average probability with which the predictions of the local expert models are

weighted to generate the final prediction for for these two types of symptoms.

(a) Euser (b) Etreatment (c) Econd

Figure 5.4: Probabilities assigned to Euser, Etreatment and Econd for substantiated vs.
unsubstantiated side effects

Firstly, Figure 5.4 shows that the probabilities assigned to Econd are higher for both

types of side effects. This is consistent with our preliminary observation that many of the

side effects are correlated to users’ medical conditions rather than to the their treatments.

From the weights assigned to Etreatment (see Figure 5.4b), we observe that a higher
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User Conditions Treatments Predicted Symptoms Local Experts Probability
Euser Etreatment Econd

u1 Ehlers-Danlos syndrome,
POTS Bupropin Out of breath 0.281 0.373 0.346

u2
Chronic fatigue syndrome,
Crohn’s disease,
Hashimoto’s disease

7-keto-dhea,
Prednisolone,
Vitamin D

Anxiety 0.285 0.377 0.338

u3 Anxiety, Depression,
Prozac

Nausea 0.217 0.572 0.211
Eating disorders, Migraine Skin problems 0.356 0.180 0.461

Pain 0.358 0.183 0.459

u4 ADHD, Acne, Depression,
Insomnia

Adderall,
Running Fatigue 0.355 0.183 0.462

Table 5.7: Sample check-ins done by different users, the weights of each local expert
networks assigned by the gating network. Symptoms in italics are deemed unsubstantiated
side effects by expert medical knowledge base. Local experts with maximum probability
(in bold) are the likely cause for the predicted symptoms.

probability is assigned in case of substantiated side effects vs. unsubstantiated ones. This

is intuitive, since the side effects that are known to be associated with a treatment, will

be reported by many users of the treatment and Etreatment will be able to predict them

reliably. In contrast, unsubstantiated side effects will rarely be reported by many users,

resulting in Etreatment being unable to model it, and it will be assigned a lower weight

by the gating network. Interestingly, the opposite phenomenon is observed for Euser and

Econd (see Figure 5.4a and 5.4c). This indicates that users report some symptoms that are

not associated with the administered treatments, and are more reliably predicted by user

features(Euser) or her pre-existing conditions(Econd).

Table 5.7 shows a few case studies of the symptoms correctly predicted by Mo-

MEx and the corresponding probabilities of the local experts. We observe that most of

the symptoms that are substantiated side effects of one of the treatments correspond to

Etreatment, indicating that the symptoms are due to the treatment. In contrast, the unsub-

stantiated side effects (in italics) correspond to Econd, suggesting that they are likely to be

symptoms of users’ pre-existing conditions.

For user u1, MoMEx predicted the symptom ‘Out of Breath’ and assigned the highest

weight to Etreatment. This matches with u1’s reported symptom after taking Bupropion

in his check-in. Similarly, for user u2, MoMEx predicted the symptom ‘anxiety’ with

Etreatment having the highest weight. Again, this prediction matches the u2’s check-in and
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indeed, anxiety is a known side effect of Prednisolone. In contrast, user u4 suffers from

insomnia and has reported experiencing ‘fatigue’. MoMEx is able to correctly predict this

symptom and attribute it to the condition ’Insomnia’.

These demonstrate that analyzing the probability distributions of local experts gener-

ated from large scale user data is useful in interpreting reported symptoms, and could be

of interest to both the web mining and medical communities.

5.5 Summary

We have systematically investigated the characteristics of user reported symptoms in an

online platform. We find that users report diverse symptoms while undergoing similar

treatments and a significant percentage of the symptoms could not be substantiated as side

effects of the treatment. We study the confounding factor behind the reported symptoms

and notice that the side effects experienced by a patient are often more correlated with

his/her pre-existing medical conditions than with the treatments. This motivated us to

view the symptom prediction problem as a personalized recommendation task tailored to

individual users. To this end, we have proposed a novel neural architecture to predict

user responses in terms of symptoms and severity rating. In order to predict both the

severity rating and symptoms together, we have designed a multi-objective learner with a

combined loss function for the two prediction tasks. Our MoMEx framework trains local

experts based on user, condition and treatment, and thereafter probabilistically combines

their predictions using a gating layer. Experimental evaluation on a real-world dataset

shows that our approach is able to outperform state-of-the-art models on both prediction

tasks and provide insights into its decisions.
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Chapter 6

Improving Usability of Social Media: Detecting

Rumor Veracity

6.1 Introduction

In this final chapter we focus on determining information reliability on one of the most

widely used mediums for sharing user generated content i.e. social media. With millions

of daily active users, social media platforms like Facebook, Twitter, Instagram, Snapchat

etc., can provide a wide reach for user generated content within a short amount of time.

Given their increasing penetration in our daily lives, uncensored news updates by media

and individuals have become our main sources of information. It has been reported that

more than 63% of social media users use Facebook and Twitter for their primary source

of news [4]. This phenomenon is further reinforced by the ability of people to share and

discuss interesting news stories with friends and family via the social media platform.

Whenever an event occurs we see a surge of posts on social media, with people sharing

information or expressing their concerns or opinions regarding the event. In recent years

we have seen a storm of fake news invading our social media networks during a major

political event such as elections [8] or crisis situations like the Las Vegas shooting incident

[117], or during natural disasters like Hurricane Florence [95], Hurricane Harvey [96] and

so on. During emergency situations people tend to be more vulnerable and tend to retweet

unverified posts, with a possible intention of being ‘helpful’ and sharing ‘information’.
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Due to the absence of any fact checking mechanism in-place, these posts could get widely

circulated and cause panic among thousands of people, even though their reliability is not

known.

We refer to such posts as rumors - a circulating piece of story with questionable ve-

racity or truthfulness. There exists rumor debunking websites like factcheck.org or

snopes.com that verify the truthfulness of rumors. These websites rely on social me-

dia observers to submit ‘tips’ on potential rumors which are then fact-checked by manual

investigative journalism. This entails a long delay, during which a false story could get

widely circulated and become disruptive. Therefore, it is necessary to build a tool that can

automatically flag potentially false stories early, before they can affect a large number of

people. Stories flagged by the tool can later be further investigated by manual journalism

to verify and uncover the propaganda or intent behind spreading the false information.

It is challenging to identify a false story given only the textual content, since they are

often created with the purpose of misleading the readers. Additionally, in contrast to our

works in previous chapters on fixed domains, the topics of the posts in social media could

be very diverse, making it harder. The initial work of [97] focused on identifying contro-

versial posts from Twitter using regular expression based text features and a few network

features. Increasingly advanced systems have since been developed using a wide range of

hand crafted features [9, 129, 115, 62]. These approaches leverage user features derived

from their demography, followers, posting and re-tweeting behavior, textual features from

the text of the posts, and external knowledge from shared links to external sources. How-

ever, designing and maintaining these wide range of features from the rich and evolving

information present in social media is non-trivial.

We propose to employ the wisdom of the crowds i.e. the users of the social media

platform to help us identify rumors early. We argue that when a news item starts spreading

over social media, peoples’ reactions to it contain clues to its truthfulness. Different

people react to the same story differently. While a lot of people could be vulnerable

and share a story without verifying it, there might be some people who are skeptical.

On a controversial post, a few people might try to question its authenticity, or ask for
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more information or point out discrepancies. These enquiries or skepticism often trigger

a discussion that motivates people to look for facts and evidences from external sources

to able to either support or deny the story. We aim to model such opinions, and arguments

put forward by people in order to resolve the veracity of a rumor.

Figure 6.1 shows a sample conversation on Twitter starting with a tweet mentioning

a rumor that spread during the Sydney hostage crisis in 2014. The first tweet in the con-

versation, hereafter referred to as source tweet, claimed ISIS involvement in the incident.

The subsequent tweets reply either directly to the source tweet, or to other tweets in the

conversation. Each tweet in a conversation can be of type support, deny, query or com-

ment depending on its stance towards the rumor. There is a veracity label for the whole

conversation indicating whether the rumor is true, false or unverified.

Figure 6.1: Sample tweet conversation structure on a rumor claiming ISIS involvement in
an attack in Sydney.

In this chapter we design a two-step solution to detect the veracity of rumors.

1. Identify the stances of all the tweets engaging in a conversation about the rumor. To

this end, we design a novel neural architecture for predicting the stance of a tweet

that considers the conversation tree structure, i.e., the textual content of the target

tweet, its timestamp, as well as its context.

2. Determine the veracity of a rumor by aggregate the individual tweet stances of users
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using a neural network architecture.

The stance prediction component leverages the discourse around a rumor by detecting

how users react to it in forms of direct/indirect replies. While a person may render direct

support or outright deny a rumor, often people comment on a possible rumor tweet with

additional information or ask for more information through queries. It is important to

correctly identify these stances, since their distributions can be distinctive for different

classes of rumors e.g. false rumors tend to evoke a lot more deny and query tweets than

a rumor which is true. To this end, we design a novel neural architecture for predicting

the stances that considers the conversation tree structure. To predict the stance of tweet in

a conversation tree, the model considers three signals, namely , (1) the textual content of

the target tweet, (2) its timestamp, and (3) its context.

To encode the textual content of a tweet, we employ convolutional neural networks in-

spired by their recent success for natural language processing tasks [45, 131, 69, 28, 140].

We further augment it with attention layer to help the network focus on parts of a tweet

that are important for identifying its stance. However, due to the short and conversational

nature of tweets, using only the tweet text is often not sufficient to understand its stance,

e.g., the tweet “No she can’t cos it’s actually not” in Figure 6.1. Since this is in response

to an ongoing conversation, looking at its preceding tweet “Sorry- how do you know its

an ISIS flag? Can you actually confirm that? ”, makes its stance clear. We account for the

context of a target tweet by taking into consideration all its preceding tweets in the reply

chain of a conversation tree. The sequential nature of conversation is captured through

a recurrent neural network (RNN) due to its superiority in handling sequential data. Ad-

ditionally, we observe that not all tweets preceding a target tweet is equally important in

understanding its stance. Therefore, we include a tweet-level attention mechanism to help

the RNN focus on the relevant parts of the conversation.

To the best of our knowledge, this is the first work that uses two-level attention over

textual content as well as at the tweet-level to encode the conversational nature of a tweet

in order to understand its stance and in turn predict rumor veracity.

After predicting the stances of all the tweets in a conversation tree, we aggregate the
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predictions along with the textual contents of the tweets to determine the rumor verac-

ity. We analyze several methods of combining the stance prediction component with the

veracity prediction step. We optimize the combined network using a transfer learning ap-

proach with full fine tuning of the weights learned in the first step. Experimental results on

a real-world dataset from Twitter show that our approach significantly outperforms other

competitive methods for both stance prediction and veracity classification.

6.2 Preliminaries

We use a real world dataset collected from Twitter and published as part of the PHEME

project [17]. This dataset is subsequently used in a SemEval 2017 task [18]. The data

contains online conversations on Twitter, each pertaining to a particular event and the

rumors around it.

Figure 6.2: Sample tweet conversation tree.

Each conversation in the dataset forms a tree T as shown in Figure 6.2. The root node

A is a source tweet that initiated the discussion. A directed edge denotes the reply of a

tweet to its parent tweet. Each tweet is associated with a timestamp at which it has been

posted e.g., tweet C is posted at tsC . The conversation sequence of a tweet is defined by

the chain of tweets starting from its parent and going all the way up to the source tweet.,
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e.g., the conversation sequence for tweet I is {A,D, F}.

False True Unverified
Comment 63.26 63.86 65.32
Support 18.93 22.18 18.46
Deny 11.71 5.99 7.52
Query 6.10 7.96 8.70

Table 6.1: Stance distribution of tweets in conversation trees of different types of rumors.

To understand the importance of people’s stances in determining the veracity of a

rumor, we first look at the distribution of stances of tweets concerning rumors of different

veracity. As we can see from Table 6.1, the distribution of stances for different types of

rumor are quite discriminating. For example, number of support tweets are higher for

a true rumor whereas higher number of deny tweets are sparked for a rumor which later

turned out to be false. Rumors that remained unverified have a greater percentage of query

tweets.

6.3 Proposed Solution

Motivated by our observation of the discriminating stance distribution for different types

of rumors, we design a two-step solution that takes into consideration the Conversation

Tree structure. The first step predicts the stances of individual tweets via CT-Stance. The

second step aggregates the predicted stances via CT-Veracity.

6.3.1 Stance Prediction

We consider three signals for a target tweet: textual content, conversation sequence, and

the timestamp that the tweet is posted. Figure 6.3 shows the overall architecture for our

stance predictor model CT-Stance.

Each tweet is first encoded by a CNN-based text encoder, and an RNN-based conver-

sation sequence encoder is used to represent the context of the target tweet. The encoded

representations of the signals are thereafter used for prediction. Details of the network

components are given below.
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Figure 6.3: Overall architecture of CT-Stance model.

Tweet Text Encoder We first encode the text of an individual tweet t, denoted as a col-

lection of words t = {w1, w2, · · · , wn}. Figure 6.4 shows the text encoder.

Each word is embedded in a lower dimensional space so that a tweet is now repre-

sented as a sequence of word vectors {v1,v2, · · · ,vn} where vi 2 Rd. We initialize

the word vectors using pre-trained Glove embeddings [84] but tune it during training to

capture the intrinsic features of the specific task at hand.

We apply a one dimensional convolution followed by a tanh non-linearity on the

sequence of word vectors. The convolutional kernel is parameterized by W 2 Rd⇥l, b 2 R

where d is the dimension of a word and l is the filter length. It processes l consecutive

word vectors and maps them to a single output which can be used as a feature. For

example, a feature ci is generated from a window of words vi:i+l�1 by

ci = tanh(W.vi:i+l�1 + b) (6.1)

The kernel slides over the embedded vectors of each l-gram and produces a map of

features c = [c1, c2, ..., cn�l+1] as the output. The output is padded to make its length the

same as the input length i.e. n.

Traditionally, a standard max-over-time pooling operation [15] is performed over
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Figure 6.4: Architecture of the Text Encoder component.

the feature map to produce the single most important feature. However, multiple non-

consecutive sections of a tweet could be important in understanding its stance, making

max pooling insufficient.

In order to identify the parts of a tweet that are important in determining its stance,

we use a self-attention [60] mechanism over the output of the convolutional layers. For

each l-gram vi:i+l�1, we compute a weight ai to determine the contribution of its corre-

sponding feature vector ci to the stance of the whole tweet and get an attention vector

a = {a1, a2, · · · , an} as

a = softmax(tanh(W.c)) (6.2)

The tweet representation for a kernel j is computed as:

xj =
nX

i

aici (6.3)

We use three different filter lengths (l 2 {2, 3, 4}) and 128 such kernels for each filter

length to detect multiple features and concatenate all extracted features to get the final

tweet text representation denoted as xt.
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Conversation Sequence Encoder Next, we encode the preceding tweets in the conver-

sation sequence of a target tweet t by using a bi-directional RNN. The input to the bi-

directional RNN is the encoded tweet text representations {x1,x2, · · · ,xt�1}. Figure 6.5

shows the conversation sequence encoder.

The RNN reads the sequence in left to right direction in the forward pass and creates a

sequence of hidden states {h1
f ,h

2
f , · · · ,ht�1

f }, where hi
f = RNN(xi,hi�1

f ) is a function

for which we use a GRU [13]. In the backward pass, it reads the input sequence in reverse

order and returns a sequence of hidden states {ht�1
b ,ht�2

b , · · · ,h1
b}. The forward and

backward hidden states are then concatenated to create the encoded hidden state of a

context tweet hi = [hi
f ;h

i
b] considering all its surrounding tweets.

Figure 6.5: Conversation Sequence Encoder

We experimented with replacing GRU by LSTM [34] which resulted in similar per-

formance at the cost of longer training time due to larger number of parameters. We use

stacked bi-directional GRUs where the output hidden states of a layer are fed as input

sequence to the next layer. The output of the last such layer is considered as the feature

vector for the context of the target tweet.

We apply a tweet-level attention over the conversation sequence to focus on the im-

portant tweets in the conversation. We compute the context attention weights aci for the

feature vector hi corresponding to each tweet in the conversation sequence. The attention

vector ac = {ac1, ac2, · · · , act�1} is then multiplied with the corresponding features hi, and
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a weighted sum is calculated (similar to Equation 6.3) to get the context representation rt.

Temporal Signal Encoder. The time elapsed since the source tweet could influence the

type of response tweets it generates. For example, when an unverified news emerges,

people typically voice their opinions from pre-conceived notions and the limited evidences

available at that time to support or deny the claim. However, as time progresses and more

evidences come in, we observe that people try to reason and evaluate the repercussions

of the event by commenting on earlier tweets with posts like ‘why this outrage let’s calm

down’ , ‘no one would care if a white kid was shot but now people care because he is

black’, ‘maybe he left his Taser in the car and so he used his gun’ and so on.

To study this observation further, we plot the percentage of tweets belonging to the

majority two stance classes (comment and support) arriving within varying time windows.

Figure 6.6 shows that as more time elapses since the source tweet, the percentage of reply

tweets commenting on the rumor increases while the percentage of support decreases.

This motivates us to use the temporal information as a signal in our network. For a target

tweet t, we encode its temporal feature tst as the difference (in seconds) between the

posting time of the source tweet and that of the target tweet.

Figure 6.6: Distributions of tweets belonging to comment and support class over time.
Dotted lines show the trends that with time comments increase while percentage of support
decreases.

CT-Stance Predictor Given a target tweet t, we concatenate its text representation xt, its

context representation rt, and temporal feature tst to form the final tweet representation

zt = [xt; rt; tst]. The vector zt is fed through stacked fully connected layers and the
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Figure 6.7: Architecture of CT-Veracity. Each row in the table shows the conversation
sequence for a target tweet from the conversation tree.

output of the last layer is passed through a softmax layer to output a probability distribution

over the four stance classes.

p(yt
stance|zt) = softmax(W.zt + b) (6.4)

where yt
stance is the probability distribution over the four stance classes for the tweet t.

The model is trained using cross-entropy loss function and optimized with Adam opti-

mizer [47].

6.3.2 Veracity Prediction

In order to classify the veracity of a rumor, we take as input a complete conversation tree

T (recall Figure 6.2). Based on the conversation tree, each individual tweet t (its textual

content and timestamp) and its conversation sequence is first fed through CT-Stance to ob-

tain the probability distribution over stances for each tweet, denoted as yt
stance. Figure 6.7

shows the architecture of the veracity classification model CT-Veracity.

The probability distribution over four stance classes of individual tweets are then av-

eraged to obtain a probability distribution over stances for the complete tree.

yT
stance =

1

|T | ⇤
X

t2T

yt
stance (6.5)
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where |T | denotes the number of tweets in T .

Apart from the output stance probability distribution, the stance predictor component

learns a tweet text representation xt for each tweet t in T . We combine these individual

tweet representations to form a textual representation of T by taking an average,

xT =
1

|T | ⇤
X

t2T

xt (6.6)

Thereafter, the stance distribution and textual representation of the tree are concate-

nated and fed through a fully connected layer with softmax to predict the veracity of the

rumor discussed in the conversation tree.

yT
veracity = softmax(W.[yT

stance;x
T] + b) (6.7)

where ; denotes concatenation operation and yT
veracity is the probability distribution over

three veracity classes.

Now we move on to address the coupling of CT-Stance into the architecture of CT-

Veracity model. We first note that the data for the veracity prediction task is considerably

smaller than the stance prediction task, since there is a single veracity label for a whole

conversation tree in contrast to a label for each tweet stance. To overcome this challenge

we adopt a transfer learning approach for training CT-Veracity.

In transfer learning, a base network is trained first, and then the learned features are

reused or transferred to a second network to be trained on a target task. It has proven

to be a powerful learning tool when the target dataset is much smaller compared to the

base dataset. For neural networks, the weights of the first n layers from a pre-trained base

network are copied to the first n layers of the target network and the remaining layers of

the target network are initialized randomly.

Following this principle we pre-train our base network (CT-Stance) and copy the cor-

responding layer weights to our target network (CT-Veracity). While training CT-Veracity,

we backpropagate the error into the transferred features from CT-Stance as well, essen-

tially fine-tuning them.
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6.4 Experiments

We carry out a comprehensive set of experiments to evaluate our proposed solution. We

use the online Twitter conversation dataset of the SemEval 2017 Challenge [18]. The

training dataset consists of tweets spanning eight events such as the ‘Charlie Hebdo shoot-

ing in Paris’, ‘The Ferguson unrest in the US’, and ‘The GermanWings plane crash’ etc.

The test data consists of conversation trees related to some events from the training set as

well as two unseen events. We report the results after averaging five runs on the test set.

6.4.1 Evaluation of CT-Stance

We start with evaluating the accuracy of our stance prediction network CT-Stance. For

each tweet in the dataset, it outputs a stance among four classes and we use accuracy as

the metric for evaluation.

We first compare CT-Stance with the following state-of-the-art neural stance predic-

tion models that consider different input signals:

• CNN [11]. This method uses a convolutional neural network on the target tweet text

to predict its stance.

• Branch-LSTM [48]. This method uses the entire conversation tree for predicting

stances of each of its nodes.

• CT-Stance�. This is the same as CT-Stance except that the temporal signal is not

used. In other words, it only considers the target tweet text and the conversation

sequence.

Table 6.2 shows the results. We observe that considering the target tweet as well as the

conversation sequence is important in understanding the discourse properly and predict-

ing its stance. Incorporating the temporal information helps in boosting the performance

further.

We note that, although the branch-LSTM [48] obtains a competitive score, it uses

some input signals which might not be available in a real-time system. In order to predict
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Model Input Signals Accuracy
CNN [11] Target tweet text 70.06%
Branch-LSTM [48] Entire conversation tree (includes future tweets) 78.4%
CT-Stance� Target tweet text, conversation sequence 78.02%
CT-Stance Target tweet text, conversation sequence, time 79.86%

Table 6.2: Comparison of Stance Prediction Models that consider different subsets of
input signals. Our model CT-Stance achieves the best performance when considering all
three realistically available signals.

the stance of a tweet, it looks up all the tweets in the tree, including the ones posted in the

future with respect to the target tweet. On the other hand, our model only uses the pre-

ceding tweets in the conversation sequence for predicting stance of a target tweet, which

is more realistic. From the results, we can observe that in comparison to branch-LSTM,

our model achieves comparable scores using only the realistically available conversation

sequence (CT-Stance�) and outperforms using temporal information (CT-Stance).

Next, we investigate the effectiveness of the various components in CT-Stance by

implementing the following variants:

• Text Encoder + Concatenation. We use the convolution layers as the text encoder

and concatenate the hidden text representations to form the conversation sequence.

• Text Encoder with Attention + Concatenation. We use the convolution layers with

attention as text encoder and concatenate the hidden text representations to form the

conversation sequence.

• Text Encoder + Conversation Encoder. We use convolution layers as text encoder

and use 2 layers of stacked Bidirectional GRU as conversation sequence encoder.

• Text Encoder with Attention + Conversation Encoder with attention. We use the

convolution layers with attention as text encoder and use 2 layers of stacked Bidi-

rectional GRU as conversation sequence encoder.

For fair comparison, the final prediction layers and the input signals for all the variants

are kept identical.

Table 6.3 shows the results. As we can see from the results, encoding the conversation

sequence properly using bidirectional GRUs produces a huge improvement over a simple
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Variants of CT-Stance Accuracy
Text Encoder + Concatenation 72.21%
Text Encoder with Attention + Concatenation 74.35%
Text Encoder + Conversation Encoder 77.50%
Text Encoder with Attention + Conversation Encoder 79.17%
CT-Stance (Text Encoder with Attention + Conversation Encoder with Attention) 79.86%

Table 6.3: Performance of architecture variants of CT-Stance. Using a sequence encoder
for the conversation greatly improves the accuracy compared to simple concatenation.
The model achieves the best scores with the use of attention at both text and tweet levels.

concatenation. This is in line with most of the recent works that have found the efficacy of

RNNs in sequence representation across domains. We also note that using attention mech-

anism further boosts the performance by enabling the model to concentrate on important

parts for stance prediction.

6.4.2 Evaluation of CT-Veracity

Veracity is a three class (true, false, unverified) classification task and we use accuracy as

its performance metric.

We compare CT-Veracity with the following state-of-the-art rumor detection approaches:

• GRU-2 [65]. This uses two stacked GRU layers to encode the sequence of textual

contents of tweets being posted about the rumor.

• CAMI [134]. This uses convolutional neural network to encode consecutive tweets

of an event.

These works do not consider the proper conversation tree structure of tweets and con-

siders all posts related to a rumor in a linear fashion ordered by their timestamps. We

also note that these works have modeled the tweet texts directly for veracity prediction,

without considering a tweet’s stance, unlike our approach. Therefore, we also design

the following baseline to investigate if knowing the ground truth stances of tweets helps

improve the accuracy of veracity prediction.

• Bi-GRU-2. This is a baseline that considers only the sequence of ground truth

stances for the tweets and use two layers of stacked Bidirectional GRU to encode
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it. This baseline demonstrates the rumor detection accuracy achievable by only

considering stances of tweets.

Model Input Signals Accuracy
GRU-2 [65] Tweet texts 45.85%
CAMI [134] Tweet texts 50.0%
Bi-GRU-2 Tweet stances (ground truth) 50.57%
CT-Veracity Tweet texts, tweet stances (predicted by CT-Stance) 57.14%

Table 6.4: Comparison of Rumor Veracity Prediction Models. This demonstrates the
effectiveness of tweet stances in determining a rumor’s veracity. Our CT-Veracity model
achieves the best performance compared to the state-of-the-art rumor detection methods.

We make two key observations from the results shown in Table 6.4. Firstly, we observe

that the ability to detect rumors is greatly benefited by directly considering the stances

of tweets compared to only its textual contents as demonstrated by baseline Bi-GRU-

2. Secondly, CT-Veracity model outperforms the competitive methods comfortably by

considering both the stances as well as the tweet contents.

As the CT-Veracity model considers the predicted stances of tweets, the accuracy of

the CT-Stance model and their coupling plays an important role in determining the overall

accuracy.

In the next set of experiments, we investigate how the coupling strategy can influence

the CT-Veracity model performance by evaluating multiple alternatives.

We consider the following,

• Pipeline model. We train the CT-Stance model first. Thereafter, we use the pre-

dicted stances from it, and the encoded text representations of the tweets from the

text encoder component as input to CT-Veracity.

• Joint model. We train a single model using a multi-objective loss function that op-

timizes both the stance prediction and veracity prediction tasks together. In this

approach since both the tasks are optimized together they can learn from one an-

other.

• Transfer learning with frozen weights. We train CT-Stance first and copy the weights

of the corresponding layers in the complete model. The weights of the text encoder
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component are kept frozen during the training of CT-Veracity. This is a prevalent

practice for training on smaller datasets, to avoid learning those parameters which

are already learnt well in another task in order to avoid overfitting [133].

Method Accuracy
Pipeline model 41.23%
Joint model 44.45%
Transfer learning with frozen weights 50.15%
CT-Veracity (Transfer learning with fine tuning) 57.14%

Table 6.5: Performance of Variants of CT-Veracity.

Table 6.5 shows the results. We firstly observe that the transfer learning based ap-

proaches outperform both the joint and the pipeline model. This is due to (i) the depen-

dency between stance prediction and veracity prediction tasks, and (ii) imbalance between

dataset sizes. For the joint model, the network tries to optimize both objectives together,

and learns a sub-optimal stance prediction model possibly due to overfitting on the ve-

racity prediction task. In the pipeline model, since CT-Stance is trained independently,

the overall stance prediction accuracy is the best. However, the recall for the under-

represented stance classes (query, deny) are lower than the majority classes (comment,

support). This affects the veracity prediction accuracy since they are the most discrimina-

tive classes for determining rumors (as shown in Table 6.1).

On the contrary, as the transfer learning with fine tuning approach is able to change the

weights in stance prediction component, the overall accuracy of the stance prediction com-

ponent decreases slightly but recall for the other three classes increase significantly. This

helps in achieving high accuracy for veracity prediction. We note that transfer learning

with fine tuning outperforms its counterpart with the frozen weight. Similar phenomenon

have been observed before in different domains [19]. By freezing the transferred weights,

it becomes non-trivial for gradient-descent to optimize a network that has been split in-

between. This can be attributed to task-specific co-adaptation of neighboring layers [133].

111



CHAPTER 6. DETECTING VERACITY OF RUMORS

6.4.3 Case Study

Finally, we present a study for different cases of rumor detection successfully handled by

our model. Figure 6.8 shows the conversation trees within the first few minutes for two

different types of rumors.

In Figure 6.8(a), a rumor regarding ‘Charlie Hebdo shooting in Paris’ is presented. We

observe that the responding tweets mostly are expressing solidarity or voicing personal

opinions, but are not raising questions regarding the event. Hence our model predicted its

veracity to be true.

In Figure 6.8(b), a false rumor about the ‘final distress call from Flight 4U9525’ is

depicted. We observe that some people respond by expressing doubts regarding the nature

of the distress call mentioned in the source tweet. These initiate a conversation where

people start pointing out the inconsistencies in the reported information invoking further

queries and denials. Considering this conversation structure and the presence of many

deny tweets our model successfully predicts it to be a false rumor.

6.5 Summary

In this work, we have examined the problem of rumor detection from analyzing the con-

versations sparked around an event on social media. To this end, we have designed a neu-

ral network architecture that captures the stances of peoples’ posts towards the rumor and

accumulates them in order to predict its veracity. We employ convolution with attention

mechanism to encode a tweet’s textual content and use RNN with tweet-level attention

mechanism to capture the conversation sequence. Experimental results on a real-world

Twitter dataset demonstrate that our stance prediction model outperforms state-of the art

models. Additionally, coupling the stance prediction model with the veracity classifica-

tion model using transfer learning with full fine tuning achieves significant improvement

over state-of-the-art rumor detection methods.
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(a) True Rumor

(b) False Rumor

Figure 6.8: Illustration for conversation trees for two rumors within the first few minutes.
The unit of time is in seconds on the time-line.
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Chapter 7

Conclusion

7.1 Conclusion

In this thesis, we have studied the problem of reliable use of online user generated content

that are present in various forms. While user generated contents are becoming increas-

ingly popular and widespread, there is a need for systematic studies on automatically

analyzing and modeling their information content for downstream use.

In our first work, we focus on user ratings for different aspects of an item such as

products or hotels or restaurants. We observe that the observed ratings are often obfus-

cated by the aspect biases of the individual users and do not reflect the true quality of an

item. We develop a probabilistic modeling framework to capture these latent aspect biases

(or preferences) of users that affect their ratings. We perform experiments on two large

real-world datasets to show that such biases indeed exist, and our model is able to cap-

ture them well. Knowing these user biases would help in interpreting their ratings better,

instead of relying only on the observed ratings which are often conflicting for different

users and can confuse a person trying to make a purchase decision.

In our second work, we tackle the issue of subjectivity at a finer level of reviews,

which are also influenced by individual aspect biases. As opposed to explicit ratings,

people express their opinions in free text with varying vocabulary when writing reviews.

We develop a probabilistic graphical model to capture opinions expressed in reviews as a

combination of aspect, topic, and sentiments for each sentence in the review. We further
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develop a similarity measure for opinions in order to find and rank supporting opinions for

a review. This framework would help a user going through diverse reviews of a product

to search for consensus around a particular opinion and thus verify its reliability.

The third contribution of this thesis deals with personalising user reported drug side

effects. For the same drug, different people may experience different symptoms or side

effects depending on their pre-existing medical conditions or other concurrent drug usage.

This limits the generalization power of self-reported symptoms for being used as a crowd-

sourced knowledge base of drug side effects. We develop a neural network architecture

to model the possible symptoms a patient might experience and their severity score, given

her existing medical conditions and a set of treatments. Knowing about the possible side

effects would help people make an informed decision when choosing between alternative

treatments. Additionally, this will reduce the anxiety people might feel before taking a

drug while looking at the long list of side effects reported online, even though most of

them may not apply to her.

The fourth contribution of the thesis is to detect unreliable information in a domain

independent, generic social media platform like Twitter. We develop a neural network

model to automatically mine opinions expressed in people’s posts and detect whether a

story being circulated is a false rumor or not. Due to the open nature of social media and

its huge network connectivity, it is crucial to detect and stop the spread of such rumors

early, before they get disruptive and mislead millions of people. We believe our proposed

framework is a step towards achieving that efficiently.

7.2 Future Directions

There exist multiple directions in which our proposed models could be extended, some of

which are outlined below.

The probabilistic graphical model proposed for modeling latent user biases behind or-

dinal aspect ratings (described in Chapter 3) makes a fundamental contribution regarding

alleviating Gaussian-Categorical non-conjugacy with introduction of auxiliary variable
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augmentation. This mathematical construction of the model is generic and presents new

possibilities for modeling such data in a wide-range of domains. The Author-ATS model

(described in Chapter 4) proposed for capturing opinions in reviews, could be extended to

examine whether the choice of aspects discussed in a review, the verbosity of a review are

dependent on author’s preferences as well. We have specialized our MoMEx framework

(discussed in Chapter 5) for the use of symptom prediction in this thesis, but we believe

this model is general in nature and could be applicable to other scenarios involving users,

items and multiple interaction targets. The proposed rumor detection model (in Chapter

6) currently does not use user demographic information (e.g. age, gender, location, pro-

fession etc.). It would be interesting to explore in the future whether those attributes can

help us identify a person’s stance towards an issue more accurately.

An important dimension not considered in any of our work but could be explored in the

future is the temporal dimension. A user’s aspect biases may change over time changing

their opinion about an item or issue. A person’s demography or medical conditions could

also vary over time, resulting in changes in her drug reactions. Future work should include

modeling temporal behavior of users to better understand her online feedbacks.
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[110] K. Sjölander, K. Karplus, M. Brown, R. Hughey, A. Krogh, I. S. Mian, and

D. Haussler. Dirichlet mixtures: a method for improved detection of weak but

significant protein sequence homology. Computer applications in the biosciences:

CABIOS, 1996.

[111] M. D. Smucker, D. Kulp, and J. Allan. Dirichlet mixtures for query estimation in

information retrieval. Center for Intelligent Information Retrieval, 2005.

[112] A. Srivastava, G. Rehm, and J. M. Schneider. Dfki-dkt at semeval-2017 task 8:

rumour detection and classification using cascading heuristics. In Workshop on

Semantic Evaluation (SemEval-2017), 2017.

[113] D. H. Stern, R. Herbrich, and T. Graepel. Matchbox: large scale online bayesian

recommendations. In Proceedings of the 18th international conference on World

wide web, 2009.

[114] K. Sugiyama, M.-Y. Kan, K. Halder, et al. Treatment side effect prediction from

online user-generated content. In Proceedings of the Ninth International Workshop

on Health Text Mining and Information Analysis, pages 12–21, 2018.

[115] S. Sun, H. Liu, J. He, and X. Du. Detecting event rumors on sina weibo automati-

cally. In Asia-Pacific Web Conference. Springer, 2013.

[116] M. Swan. Crowdsourced health research studies: an important emerging comple-

ment to clinical trials in the public health research ecosystem. Journal of medical

Internet research, 14(2), 2012.

[117] N. Y. Times. After las vegas shooting, fake news regains its megaphone, 2017.

[Online; last accessed 14-July-2019].

130



BIBLIOGRAPHY

[118] I. Titov and R. McDonald. Modeling online reviews with multi-grain topic models.

In Proc. of WWW, 2008.

[119] I. Titov and R. T. McDonald. A joint model of text and aspect ratings for sentiment

summarization. In Proc. of ACL, 2008.

[120] A. Trabelsi and O. R. Zaiane. Mining contentious documents using an unsupervised

topic model based approach. In Proc. of IEEE ICDM, 2014.

[121] S. Virtanen and M. Girolami. Ordinal mixed membership models. In International

Conference on Machine Learning, 2015.

[122] F. Wang, M. Lan, and Y. Wu. Ecnu at semeval-2017 task 8: Rumour evaluation

using effective features and supervised ensemble models. In Workshop on Semantic

Evaluation (SemEval-2017), 2017.

[123] H. Wang and M. Ester. A sentiment-aligned topic model for product aspect rating

prediction. In EMNLP, 2014.

[124] H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis on review text data: a

rating regression approach. In Proc. of SIGKDD, 2010.

[125] H. Wang, Y. Lu, and C. Zhai. Latent aspect rating analysis without aspect keyword

supervision. In Proceedings of the 17th ACM SIGKDD, 2011.

[126] R. W. White, R. Harpaz, N. H. Shah, W. DuMouchel, and E. Horvitz. Toward

enhanced pharmacovigilance using patient-generated data on the internet. Clinical

Pharmacology & Therapeutics, 96(2):239–246, 2014.

[127] Wired. Facebook is changing news feed (again) to stop fake news, 2019. [Online;

last accessed 04-July-2019].

[128] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-

encoders for top-n recommender systems. In Proceedings of the Ninth ACM In-

ternational Conference on Web Search and Data Mining, pages 153–162. ACM,

2016.

131



BIBLIOGRAPHY

[129] F. Yang, Y. Liu, X. Yu, and M. Yang. Automatic detection of rumor on sina weibo.

In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, 2012.

[130] Z. Yang, A. Kotov, A. Mohan, and S. Lu. Parametric and non-parametric user-

aware sentiment topic models. In Proc. of SIGIR, 2015.

[131] S. W.-t. Yih, X. He, and C. Meek. Semantic parsing for single-relation question

answering. In ACL, 2014.

[132] X. Yin, J. Han, and S. Y. Philip. Truth discovery with multiple conflicting informa-

tion providers on the web. IEEE Transactions on Knowledge and Data Engineer-

ing, 20(6):796–808, 2008.

[133] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in

deep neural networks? In NIPS, 2014.

[134] F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan. A convolutional approach for misinfor-

mation identification. In IJCAI, 2017.

[135] W. Zhang and J. Wang. Prior-based dual additive latent dirichlet allocation for

user-item connected documents. In Proc. of IJCAI, 2015.

[136] Z. Zhang, J. Nie, and X. Zhang. An ensemble method for binary classification of

adverse drug reactions from social media. In Proc. of the Social Media Mining

Shared Task Workshop at the Pacific Symposium on Biocomputing, 2016.

[137] T. Zhao, C. Li, Q. Ding, and L. Li. User-sentiment topic model: refining user’s

topics with sentiment information. In ACM SIGKDD Workshop on Mining Data

Semantics, 2012.

[138] Z. Zhao, P. Resnick, and Q. Mei. Enquiring minds: Early detection of rumors in

social media from enquiry posts. In WWW, 2015.

[139] S. Zhi, Y. Sun, J. Liu, C. Zhang, and J. Han. Claimverif: a real-time claim verifica-

tion system using the web and fact databases. In Proceedings of the 2017 ACM on

132



BIBLIOGRAPHY

Conference on Information and Knowledge Management, pages 2555–2558. ACM,

2017.

[140] L. Zhining, G. Xiaozhuo, Z. Quan, and X. Taizhong. Combining statistics-based

and cnn-based information for sentence classification. In ICTAI. IEEE, 2016.

133


